Ciências de 5ª série parte II


 

Os planetas

Os planetas não produzem luz, apenas refletem a luz do Sol, que é a estrela do Sistema Solar.

Teorias afirmam que os planetas também foram formados a a partir de porções de massa muito quente e que todos estão de resfriando. Alguns, entre eles a Terra, já se resfriaram o suficiente para apresentar a superfície sólida.

Um corpo celeste é considerado um planeta quando, além de não ter luz própria, gira ao redor de uma estrela.

Os planetas têm forma aproximadamente esférica. Os seus movimentos principais são o de rotação e o de translação.  Cada planeta possui um eixo de rotação em relação a Sol, o mais inclinado deles é o planeta-anão Plutão, pois seu eixo de rotação em relação ao Sol é de 120º, olhe a figura.

 

 

Movimento de Rotação

No movimento de rotação, os planetas giram em torno do seu próprio eixo, uma linha imaginária que passa pelo seu centro. O observador terrestre tem dificuldade de perceber o movimento de rotação da Terra. Para isso deve-se notar que o Sol, do amanhecer ao anoitecer, parece se mover da região leste em sentido oeste. O mesmo acontece, à noite, com a Lua, as estrelas e demais astros que vemos no céu.

O movimento de rotação da Terra dura, aproximadamente 24horas – o que corresponde a um dia. A Terra, por ser esférica, não é iluminada toda de uma vez só. Conforme a Terra gira em torno do seu eixo, os raios de luz solar incidem sobre uma parte do planeta e a outra fica à sombra.

O ciclo do dia e da noite ocorrem graças a rotação. Enquanto o planeta está girando sobre seu próprio eixo é dia nas regiões que estão iluminadas pelo Sol (período claro) e, simultaneamente, é noite nas regiões não iluminadas (período escuro).

 

 

 

Movimento de Translação

O movimento de translação é executado pelos planetas ao redor do Sol, e o tempo que levam para dar uma volta completa é denominado período orbital. No caso da Terra esse período leva cerca de 365 dias e aproximadamente 6 horas para se completar. A Terra, no seu movimento de translação, forma uma elipse pouco alongada (bem próxima a circular). Já o planeta Netuno traça a sua órbita elíptica de forma bastante alongada.

Em razão do movimento de translação e da posição de inclinação do eixo da Terra, cada hemisfério fica, alternadamente, mais exposto aos raios solares durante um período do ano. Isso resulta nas quatro estações do ano: verão, outono, inverno e primavera. Nos meses de dezembro a março, o Hemisfério Sul – localizado ao sul da linha do Equador – fica mais exposto ao Sol. É quando os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Sul. É verão nesse hemisfério. Depois de seis meses, nos meses de junho a setembro, a Terra já percorreu metade da sua órbita. O Hemisfério Norte – localizado ao norte da linha do Equador – fica mais exposto ao Sol e, assim, os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Norte. É verão no Hemisfério Norte.

 

 

Enquanto é verão no Hemisfério Norte com os dias mais longos e as noites mais curtos, é inverno no Hemisfério Sul, onde os dias tornam-se mais curtos e as noites mais longas. E vice-e-versa.

Em dois períodos do ano (de março a junho e de setembro a dezembro) ha posições da Terra, na sua órbita, em que os dois hemisférios são iluminados igualmente. É quando ocorrem, de forma alternada nos dois hemisférios, as estações climáticas primavera e outono.

As estações do ano são invertidas entre os hemisférios Sul e Norte. Por isso é possível, numa mesma época do ano, por exemplo, pessoas aproveitarem o verão numa praia no Hemisfério Sul, enquanto outras se agasalharem por causa de uma nevasca de inverno no Hemisfério Norte.

Nas regiões perto da linha do Equador, tanto em um hemisfério quanto no outro, ocorre constantemente a incidência dos raios do Sol, faz calor durante todo o ano. Há apenas a estação das chuvas e a estação da seca.

Em virtude da “curvatura da Terra” e da inclinação do eixo de rotação da Terra em relação ao seu plano de órbita, os pólos recebem raios de Sol bastante inclinados. Por um longo período do ano, os raios solares não chegam aos pólos; por isso essas são regiões muito frias.

Para os moradores dessas regiões, só há duas estações climáticas:

  • Uma que chamam inverno, ou seja, o longo período em que os raios solares não atingem o pólo;
  • outra chamada verão, quando não acontece o pôr-do-sol durante meses.

Os planetas do Sistema Solar

 

São oito os planetas clássicos do Sistema Solar. Na ordem de afastamento do Sol, são eles: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.

A partir dos avanços tecnológicos que possibilitaram a observação do céu com instrumentos ópticos como lunetas, telescópios e outros, os astrônomos vêm obtendo informações cada vez mais precisas sobre os planetas e seus satélites. Vamos conhecer um pouco a respeito de cada um desses oito planetas do Sistema Solar.

 

 

Mercúrio

 

É o planeta mais próximo ao Sol e o menor do Sistema Solar. É rochoso, praticamente sem atmosfera, e a sua temperatura varia muito, chegando a  mais de 400ºC positivos, no lado voltado para o Sol, e cerca de 180ºC negativos, no lado oposto. Mercúrio não tem satélite. É o planeta que possui um movimento de translação de maior velocidade (o ano mercuriano tem apenas 88 dias). O aspecto da superfície é parecido com o da nossa Lua, toda coberta de crateras, originadas da colisão com corpos celestes.

 

 

Vênus

 

Vênus é conhecido como Estrela-D’Alva ou Estrela da tarde por causa de seu brilho e também porque é visível ao amanhecer e ao anoitecer, conforme a época do ano (mas lembre-se que ela é um planeta e não uma estrela).

É o segundo planeta mais próximo do Sol e o planeta mais próximo da Terra. As perguntas intrigantes que este planeta “gêmeo” da Terra nos coloca começam com o seu movimento de rotação própria. Uma rotação completa sobre si mesmo demora 243.01 dias, o que é um período invulgarmente longo. Além disso, enquanto que a maior parte dos planetas rodam sobre si próprios no mesmo sentido, Vênus é uma das exceções. Tal como Urano e Plutão, a sua rotação é retrógrada, o que significa que em Vênus o Sol nasce a leste e põe-se a oeste.

Vênus é um planeta muito parecido com a Terra, em tamanho, densidade e força da gravidade à superfície, tendo-se chegado a especular sobre se teria condições favoráveis à vida. Além disso, suas estruturas são muito parecidas: um núcleo de ferro, um manto rochoso e uma crosta. Hoje sabemos que, apesar de ter tido origens muito semelhantes à Terra, a sua maior proximidade ao Sol levou a que o planeta desenvolvesse um clima extremamente hostil à vida. De fato, Vênus é o planeta mais quente do sistema solar, sendo mesmo mais quente do que Mercúrio, que está mais próximo do Sol. A sua temperatura média à superfície é de 460ºC devido ao forte efeito de estufa que acontece em grande escala em todo o planeta e não apresenta água.

 

 

 

Terra

 

É o terceiro planeta mais próximo do Sol. É rochoso e a sua atmosfera é composta de diferentes tipos de gases, e a sua temperatura média é de aproximadamente 15ºC.

A Terra, até o que se sabe, é o único planeta do Sistema Solar que apresenta condições que possibilitam a existência de seres vivos como os conhecemos. Tem um satélite, a Lua.

Marte

 

Visto da Terra parece um planeta vermelho, embora na verdade seja mais acastanhado. O seu eixo de rotação tem uma inclinação muito semelhante à do nosso planeta, 25.19º, o que significa que tem estações do ano. Ao contrário de Mercúrio, que está demasiado perto do Sol para que seja facilmente observado, e de Vênus, cuja densa atmosfera e cobertura de nuvens bloqueiam a observação da sua superfície, Marte está relativamente próximo da Terra sem estar muito próximo do Sol, e tem uma atmosfera muito rarefeita e na maior parte formada por gás carbônico, o que nos permite observar a sua superfície com relativa facilidade. Seu período de rotação é aproximadamente 24h, muito parecido com o da Terra, porém sua translação dura cerca de 687 dias.

 

Satélites de Marte

Marte tem ainda duas luas chamadas Deimos e Phobos, que no entanto têm formas irregulares. Têm um tamanho da ordem dos 10 km e assemelham-se mais a asteróides do que a pequenos planetas.

 

Água em Marte? E daí?

Por mais de um século, os astrônomos especularam se Marte teria água. Em 2010, uma pequena nave robótica enviada pelos Estados Unidos, a Opportunity, transmitiu a resposta em forma de fotos da superfície marciana: bolhas e ranhuras microscópicas claramente visíveis em algumas pedras demonstram que elas já estiveram submersas em água. Se foi assim, é possível que tenha existido vida no planeta vermelho. A suposição baseia-se num fato científico: água líquida é a única substância vital para a existência dos seres vivos na forma como os conhecemos. A denominação pode parecer redundante, mas é precisa. Pelo que se sabe, em estado gasoso ou sólido a substância não serve para a vida. O processo bioquímico que gerou a vida na Terra, há 3,5 bilhões de anos, só poderia ter ocorrido num meio fluido. No líquido, as moléculas se dissolvem e as reações químicas acontecem. Como estão sempre em fluxo, os líquidos transportam nutrientes e material genético de um lugar para outro, seja dentro de uma célula, de um organismo, de um ecossistema ou até de um planeta.

Hoje em dia, contudo, Marte não exibe condições que permitam água no estado líquido à sua superfície. Por um lado, a pressão da atmosfera atual do planeta à superfície é muito baixa: 0.0063 vezes a pressão da atmosfera à superfície da Terra, e quanto menor é a pressão, mais baixa é a temperatura necessária para a água passar do estado líquido para o gasoso. Por outro lado, a sua atmosfera muito rarefeita não fornece um mecanismo eficaz de efeito estufa e a temperatura média em Marte é de -53ºC, oscilando entre máximos de 20ºC e mínimos de -140ºC. Feitas as contas, as combinações possíveis de temperatura e pressão à superfície de Marte não permitem água no estado líquido, apenas no estado sólido ou no gasoso.

 

Júpiter

 

A massa de Júpiter é duas vezes e meia a massa combinada de todos os outros corpos do sistema solar à exceção do Sol.

Júpiter é o maior planeta do sistema solar, e o primeiro dos gigantes gasosos. Tem um diâmetro 11 vezes maior que o diâmetro da Terra e uma massa 318 vezes superior. Demora quase 12 anos a completar uma órbita mas tem um período de rotação invulgarmente rápido: 9h 50m 28s sendo o planeta com a rotação mais rápida do sistema solar. Embora tenha um núcleo de ferro, quase todo o planeta é uma imensa bola de hidrogênio e um pouco de hélio. A temperatura da superfície é de cerca de -150ºC.

 

As sondas Voyager 1 e 2 mostraram que Júpiter também possui anéis, tal como os outros gigantes gasosos. No entanto, se para observarmos os anéis de Saturno basta um telescópio amador uma vez que estes são constituídos principalmente por pequenos detritos de gelo que refletem muito a luz, os anéis de Júpiter parecem-nos quase invisíveis, uma vez que são compostos por partículas rochosas de pequenas dimensões que refletem muito pouco a luz. Julga-se que estes detritos são o resultado de colisões de meteoritos com os 4 satélites mais próximos do planeta.

 

Os satélites

Júpiter tem pelo menos 63 satélites identificados. Os 4 maiores, e mais importantes, são conhecidos como as luas galileanas, assim chamadas por terem sido descobertas por Galileu Galilei (1564-1642) quando observou Júpiter com um telescópio que ele próprio construiu. São elas: Io, Europa, Ganymede e Callisto. Historicamente, a descoberta destas luas constituiu uma das primeiras provas irrefutáveis que a Terra não estava no centro do Universo.

 

Saturno

 


Foto de Saturno feita pela sonda espacial Cassini, quando estava a cerca de 57 milhões de quilômetros de Saturno (foto NASA).
É o segundo maior planeta do nosso sistema solar. É famoso por seus anéis, que podem ser vistos com o auxílio de pequenos telescópios. Os anéis são feitos com pedaços de gelo e rochas. A temperatura média da superfície do planeta é de -140ºC. Saturno é formado basicamente por hidrogênio e pequena quantidade de hélio.

O movimento de rotação em volta do seu eixo demora cerca de 10,5 horas, e cada revolução ao redor do Sol leva 30 anos terrestres.

Tem um número elevado de satélites, 60 descobertos até então, dos quais 35 possuem nomes, e está cercado por um complexo de anéis concêntricos, composto por dezenas de anéis individuais separados por intervalos, estando o mais exterior destes situado a 138 000 km do centro do planeta geralmente compostos por restos de meteoros e cristais de gelo. Alguns deles têm o tamanho de uma casa.

 

 

 

Urano

 

Urano é o sétimo planeta do sistema solar, situado entre Saturno e Netuno. A característica mais notável de Urano é a estranha inclinação do seu eixo de rotação, quase noventa graus em relação com o plano de sua órbita; essa inclinação não é somente do planeta, mas também de seus anéis, satélites e campo magnético. Urano tem a superfície a mais uniforme de todos os planetas por sua característica cor azul-esverdeada, produzida pela combinação de gases em sua atmosfera, e tem anéis que não podem ser vistos a olho nu; além disso, tem um anel azul, que é uma peculiaridade planetária. Urano é um de poucos planetas que têm um movimento de rotação retrógrado, similar ao de Vênus

Tem 27 satélites ao seu redor e um fino anel de poeira.

 

 

Netuno

 

Orbitando tão longe do Sol, Netuno recebe muito pouco calor. A sua temperatura superficial média é de -218 °C. No entanto, o planeta parece ter uma fonte interna de calor. Pensa-se que isto se deve ao calor restante, gerado pela matéria em queda durante o nascimento do planeta, que agora irradia pelo espaço fora.

A atmosfera de Netuno tem as mais altas velocidades de ventos no sistema solar, que são acima de 2000 km/h; acredita-se que os ventos são amplificados por este fluxo interno de calor. A estrutura interna lembra a de Urano – um núcleo rochoso coberto por uma crosta de gelo, escondida no profundo de sua grossa atmosfera. Os dois terços internos de Netuno são compostos de uma mistura de rocha fundida, água, amônia líquida e metano. A terça parte exterior é uma mistura de gases aquecidos composta por hidrogênio, hélio, água e metano.

Embora não sejam visíveis nas fotografias do telescópio espacial Hubble, Netuno faz parte dos planetas gigantes que possuem um complexo sistema de anéis. Possui cinco anéis principais e sua descoberta se deve a uma observação efetuada ainda em 1984 a bordo de um avião U2 que acompanhou o deslocamento do planeta por algumas horas durante a ocultação de uma estrela. Neptuno tem 13 luas conhecidas. A maior delas é Tritão, descoberta por William Lassell apenas 17 dias depois da descoberta de Netuno.

Netuno, o gigante azul

 

 

E Plutão?

 

Plutão que recebera o nome do deus dos infernos, da mitologia greco-latina, foi classificado como o nono planeta do Sistema Solar. Descoberto em 1930, pelo astrônomo norte-americano Clyde Tombaugh, esse astro foi sempre motivo de acirrados debates. Afinal, as características do planetóide, entre outras a excentricidade de sua órbita inclinada, em que certos períodos cruza a órbita de Netuno, já indicavam que dificilmente ela poderia permanecer na elite dos planetas do nosso Sistema. Realmente, 76 anos depois, a UAI resolveu reclassificar o astro do grupo de planetas-anões.

Caronte continua a ser considerado satélite de Plutão. Entretanto, para alguns astrônomos eles são astros gêmeos, e esse é um debate que pode ser, a qualquer momento retomado pela União Astronômica Internacional. Será Coronte promovido a planeta-anão?

 


Plutão e seu satélite Caronte

Outros astros do Sistema Solar

 

Satélites

Até 1610 o único satélite conhecido era o da Terraa Lua. Naquela ocasião, Galileu Galilei (1564-1642), com a sua luneta, descobriu satélites na órbita do planeta Júpiter. Hoje se sabe da existência de dezenas de satélites.

Na Astronomia, satélite natural é um corpo celeste que se movimenta ao redor de um planeta graças a força gravitacional. Por exemplo, a força gravitacional da Terra mantém a Lua girando em torno do nosso planeta.

Os satélites artificiais são objetos construídos pelos seres humanos. O primeiro satélite artificial foi lançado no espaço em 1957. Atualmente há vários satélites artificiais ao redor da Terra.

O termo “lua” pode ser usado como sinônimo de satélite natural dos diferentes planetas.

 

 

 

Cometas

 

Cometa Halley

Um cometa é o corpo menor do sistema solar, semelhante a um asteróide, possui uma parte sólida, o núcleo, composto por rochas, gelo e poeira e têm dimensões variadas (podendo ter alguns quilômetros de diâmetro). Geralmente estão distantes do Sol e, nesse caso, não são visíveis. Eles podem se tornar visíveis à medida que, na sua longa trajetória, se aproximam do Sol sublimando o gelo do núcleo e liberando gás e poeira para formar a cauda e a “cabeleira” em volta do núcleo. O mais conhecido dele é o Halley, que regularmente passa pelo nosso Sistema Solar. De 76 em 76 anos, em média, ele é visível da Terra. Ele passou pela região do Sistema Solar próxima do nosso planeta, em 1986, o que possibilitou a sua visibilidade, portanto, o Halley deverá estar de volta em 2062.

 

 

 

Asteróides

Um asteróide é um corpo menor do sistema solar, geralmente da ordem de algumas centenas de quilômetros apenas. São milhões de corpos rochosos que giram ao redor do Sol. Da Terra, só podem ser observados por meio de telescópio. Entre as órbitas dos planetas Marte e Júpiter, encontra-se um cinturão de asteróides e outro após a órbita de Netuno.

 

 

 

Meteoróides, meteoros e meteoritos

 

 

São fragmentos de rochas que se formam apartir de cometas e asteróides. O efeito luminoso é produzido quando fragmentos de corpos celestes incendeiam-se em contato com a atmosfera terrestre devido ao atrito. Esses rastros de luz são denominados meteoros e popularmente são conhecidos como estrelas cadentes, mas não são estrelas.

Quando caem sobre a Terra, atraídos pela força gravitacional, são chamados de meteoritos. Na maioria das vezes, eles são fragmentos de rochas ou de ferro. Os meteoritos tem forma variada e irregular, e o tamanho pode variar de microfragmentos a pedaços de rochas de alguns metros de diâmetro.

 

O maior meteorito brasileiro (pesando mais de 5000 quilos), o Bendegó, foi encontrado no interior da Bahia em 1784 e encontra-se em exposição no Museu Nacional do Rio de Janeiro.

 


Meteorito Bendegó

Gás carbônico

Sabe do que são formadas aquelas bolhas que aparecem nos refrigerantes? De gás carbônico. E são também de gás carbônico as bolhas que se desprendem em comprimidos efervescentes.

O gás carbônico compõe apenas 0,03% do ar. Ele aparece na atmosfera como resultado da respiração dos seres vivos e da combustão. É a partir do gás carbônico e da água que as plantas produzem açucares no processo da fotossíntese.

A partir dos açucares, as plantas produzem outras substâncias – como as proteínas e as gorduras – que formam o seu corpo e que vão participar também da formação do corpo dos animais.

Agora veja na figura como o carbono circula pela natureza: a respiração, a decomposição (que é a respiração feita pelas bactérias e fungos) e a combustão liberam gás carbônico no ambiente. Esse gás carbônico é retirado da atmosfera pelas plantas durante a fotossíntese.

 

Como outros gases, o gás carbônico pode passar para o estado líquido ou para o estado sólido se baixarmos suficientemente sua temperatura (a quase 80ºC negativos). O gás carbônico sólido é conhecido como gelo-seco e é usado na refrigeração de vários alimentos.

 

O Nitrogênio

É o gás presente em maior quantidade no ar. Essa substância é fundamental para a vida na Terra, pois faz parte da composição das proteínas, que são moléculas presentes em todos os organismos vivos.

O nitrogênio é um gás que dificilmente se combina com outros elementos ou substâncias. Assim, ele entra e sai de nosso corpo durante a respiração (e também do corpo dos outros animais e plantas) sem alterações. Assim, os animais não conseguem obter o nitrogênio diretamente do ar, somente algumas bactérias são capazes de utilizar diretamente o nitrogênio, transformando-o em sais que são absorvidos pelas plantas. Os animais obtêm o nitrogênio somente por meio dos alimentos.

Essa transformação é feita por bactérias que vivem na raiz das plantas conhecidas como leguminosas (feijão, soja, ervilha, alfafa, amendoim, lentilha, grão-de-bico). É por isso que essas plantas não tornam o solo pobre em nitratos, como costuma ocorrer quando outras espécies vegetais são cultivadas por muito tempo no mesmo lugar.

Com sais de nitrogênio, as plantas fabricam outras substâncias que formam seu corpo. Os animais, por sua vez, conseguem essas substâncias ingerindo as plantas ou outros seres vivos. Quando os animais e as plantas morrem, essas substâncias que contêm nitrogênio sofrem decomposição e são transformadas em sais de nitrogênio, que podem ser usadas pelas plantas. Uma parte dos sais de nitrogênio, porém, é transformada em gás nitrogênio por algumas bactérias do solo e voltam para a atmosfera. Desse modo o nitrogênio é reciclado na natureza.


Saiba mais sobre o ciclo do nitogênio.

 

O nitrogênio e os Fertilizantes

A produção de sais de nitrogênio pode ser feita em indústrias químicas, a partir do nitrogênio do ar. Combina-se o nitrogênio com o hidrogênio, produzindo-se amoníaco, que é então usado para fabricar sais de nitrogênio.

O amoníaco tem ainda outras aplicações: ele é usado em certos produtos de limpeza e também para fabricar muitos outros compostos químicos.

Os Gases Nobres

São gases que dificilmente se combinam com outras substâncias, correspondendo a menos de 1% do ar. Eles não são utilizados pelo organismo dos seres vivos, entram e saem inalterados durante a respiração.

Entre os gases nobres, o argônio é o que está presente em maior quantidade (0,93%).

Em lâmpadas comuns (incandescentes), o argônio é muito utilizado, já que a sua produção é barata.

Outros gases nobres são:

  • neônio, usado em letreiros luminosos (é conhecido como gás néon);
  • xenônio, usado em lâmpadas de flash de máquinas fotográficas;
  • hélio, um gás de pequena densidade, usado em certos tipos de bexiga e balões dirigíveis;
  • radônio, um gás radiativo, que, por isso é perigoso, em determinadas concentrações, para os seres vivos.

 

O Vapor de Água

Ao se colocar água bem gelada num copo e esperar alguns instantes, a parte de fora do copo fica úmida.

Como a água de dentro do copo não pode atravessar o vidro, a água que se formou veio do ar em volta do copo. Foi o vapor de água do ar que se condensou (passou para o estado líquido) em contato com a temperatura mais baixa do copo.

A água no estado de vapor que existe na atmosfera origina-se da evaporação da água dos rios, mares, lagos e solos, e também da respiração e transpiração dos seres vivos.

Talvez você já tenha ouvido falar em umidade relativa do ar. É a relação entre a quantidade de água que existe em certo momento na atmosfera e a quantidade máxima que ela pode conter (em torno de 4%). Quando essa quantidade é atingida, dizemos que o ar está saturado. O ar está saturado nas nuvens, no nevoeiro e quando começa a chover. Quanto maior a umidade relativa, maior a chance de chover.

 

 


Existe um instrumento simples que pode ser utilizado para medir a umidade relativa do ar: o higrômetro de cabelo.

Que é que um higrômetro mede?

Um higrômetro indica umidades relativas. No higrômetro de cabelo um fio de cabelo humano, prêso em A, é enrolado no eixo B e fixo à mola C que o distende. Quando a umidade do ar aumenta, o cabelo absorve água do ar e expande, fazendo rolar o eixo com ponteiro ao ser distendido pela mola. O ponteiro indica a umidade relativa numa escala graduada.

 

 

 

 

 

 

Propriedades do Ar e dos Gases

Uma bexiga cheia de ar tem mais massa que uma bexiga vazia. Por quê?

Porque tem mais ar. O ar tem massa e ocupa espaço. Mas, no caso da bexiga, a diferença de massa é bem pequena e só pode ser medida em balanças bem sensíveis.

A diferença de massa é pequena, porque a densidade do ar é relativamente pequena – muito menor, por exemplo, que a densidade da água.

Agora considere esta situação: você sente um cheiro gostoso de bolo ou outra comida vindo da cozinha. Na realidade, você está sentindo o efeito de gases que saíram do alimento e que estimularam certas partes do seu nariz. Isso acontece devido a uma propriedade do ar e de todos os gases: eles tendem a se espalhar, preenchendo todo o espaço disponível. Por isso, os gases que se desprendem do alimento se espalham pela casa.

Compare os gases com os líquidos: quando você despeja um pouco de água numa garrafa, sem enchê-la, a água se deposita no fundo. Ela não ocupa o volume todo da garrafa. Mas, por outro lado, qualquer que seja a quantidade de ar dentro de uma garrafa, ele estará ocupando todo o espaço da garrafa. O ar, e os gases em geral, ocupam todo o volume do recipiente onde estão. É a propriedade da expansibilidade.

Quando sopramos uma bexiga de aniversário, enchendo-a bem, constatamos que a parede do balão fica bem esticada. Isso acontece devido a outra propriedade do ar e dos gases: eles exercem pressão contra a parede do recipiente que ocupam.

A pressão exercida pelo ar na superfície da Terra chama-se pressão atmosférica. Recebe esse nome porque a atmosfera é a camada de ar que envolve o planeta.

Pressão atmosférica e a altitude

O matemático francês Blaise Pascal (1623-1662) levou um barômetro para o alto de uma montanha. Após muitas observações, medições e anotações, ele verificou que a pressão do ar diminui com a altura. O ar vai ficando rarefeito (diminui a quantidade de moléculas nele presente), gradativamente, conforme aumenta a altitude.

A partir desse e de outros experimentos, os cientistas concluíram que a maioria dos gases está comprimida na parte mais próxima da superfície da Terra e que o ar fica rarefeito conforme a altitude aumenta, até um ponto em que não existe mais ar – esse é o limite da atmosfera de nosso planeta. Os avanços da ciência e da tecnologia têm possibilitado mais conhecimentos sobre a atmosfera.

O nivel do mar é utilizado como referencial quando se deseja calcular a pressão atmosférica.

Quanto maior a altitude, mais rarefeito é o ar, e assim, menor é a pressão que ele exerce sobre nós.

Compressibilidade e elasticidade

Observe o que acontece nas etapas do experimento abaixo:

Ao tampar a ponta da seringa e empurrar o êmbolo, o ar que existe dentro da seringa fica comprimido, passando a ocupar menos espaço. Isso ocorre em razão de uma propriedade do ar denominada compressibilidade.

Quando o êmbolo é solto e a força que comprime o ar é cessada, o ar volta a ocupar seu volume inicial. Isso ocorre em razão de uma propriedade do ar chamada elasticidade.

 

 

Os Seres Vivos e a Pressão Atmosférica

A atmosfera exerce pressão também sobre os organismos vivos.

Como o nosso corpo não se deforma? Ou porque não morremos esmagados?

Os organismos resistem porque os líquidos e os gases dentro deles exercem uma pressão contrária à da atmosfera.

A pressão atmosférica também é responsável pela entrada de ar nos nossos pulmões. Observe que na inspiração o tórax se expande, isto é, aumenta de volume.

Quando o tórax se expande, os pulmões também aumentam de volume, e o ar entra. Veja: na realidade, com a pressão do tórax, a pressão do ar nos pulmões diminui, ficando menor que a pressão atmosférica. É essa diferença entre a pressão atmosférica e a pressão de dentro dos pulmões que impulsiona o ar para dentro do nosso corpo.

Quando o ar sai, na expiração, ocorre o inverso: o volume do tórax e o dos pulmões diminuem, e a pressão do ar interna torna-se maior que a da atmosfera, fazendo o ar sair.

Se você já viajou para locais mais altos como a serra, viajou de avião ou passou por alguma outra situação na qual você mudou de altitude rapidamente, deve ter percebido uma sensação desagradável na parte interna da orelha. Essa sensação é decorrente de um desequilíbrio momentâneo entre a pressão que existe dentro do seu corpo e a do ambiente, em que houve alteração.

A pressão atmosférica exerce força desigual sobre um dos lados do tímpano, distendendo-o.

A previsão do tempo

A rádio, a televisão, os jornais e os sites diariamente anunciam a previsão do tempo. Dentro de certa margem de segurança, ficamos sabendo se vai chover, se vai fazer frio ou calor.

Para facilitar o estudo da atmosfera, os cientistas a dividem em várias camadas:

Troposfera

A troposfera é a camada mais próxima da superfície terrestre. Nela se formam as nuvens e ocorrem as chuvas, os ventos e os relâmpagos.

Na troposfera concentra-se a maior quantidade do gás oxigênio que os seres vivos utilizam na respiração.

Estratosfera

Nessa camada, a umidade (presença de vapor de água) é quase inexistente. Há baixa concentração de gás oxigênio, e o ar, em geral, apresenta-se rarefeito. Na estratosfera encontra-se o gás ozônio (gás cuja, molécula é formada por 3 átomos de oxigênio, O3). Essa camada filtra os raios ultravioletas do Sol, evitando assim danos aos seres vivos. Na troposfera, porém, o ozônio, quando presente, é considerado um poluente.

Nessa região atmosférica não ocorrem as turbulências provocadas pelos fenômenos meteorológicos, comuns na troposfera; por isso os vôos mais longos e feitos por grandes aviões ocorrem nessa camada.

Mesosfera

É uma camada também rica em gás ozônio. Apresenta baixas temperaturas.

Ionosfera ou termosfera

Nessa camada o ar é muito rarefeito e existem partículas carregadas de eletricidade. Essas partículas possibilitam a transmissão de ondas de rádio e similares a grandes distâncias.

Exosfera

É a ultima camada da atmosfera, isto é, o limite entre nosso planeta e o espaço cósmico. Nessa camada predomina gás hidrogênio. O ar é muito rarefeito e as moléculas de gás “escapam” constantemente para o espaço. É onde costumam ficar os satélites artificiais.

Toda os fatores que influênciam no clima da Terra estão contidos na Troposfera, vamos estudar cada um deles agora.

A importância da previsão do tempo

Se sabemos que vai chover, levamos o guarda-chuva quando saímos de casa. Mas uma dica importante sobre o tempo nos ajuda em muitas outras coisas. Entre elas, para avaliar as condições da estrada, quando viajamos, e também para a agricultura.

Os agricultores precisam, muitas vezes, fazer o plantio no início de um período de chuvas, porque as sementes precisam de água para germinar. Por outro lado, a previsão de enchentes, de geadas ou de falta de chuvas pode evitar prejuízos.

A meteorologia é a ciência que estuda as condições atmosféricas e, com isso, auxilia na previsão do tempo.

Os técnicos fazem a previsão do tempo estudando vários aspectos da atmosfera: massas de ar, frentes fria ou quentes, umidade do ar, temperatura do lugar, pressão atmosférica, etc.

Tempo e clima

É comum as pessoas confundirem os termos tempo e clima. Afinal, o que significa cada um deles?

O termo tempo corresponde a uma situação de momento. Indica o estado atmosférico em determinado tempo e lugar. Hoje, onde você mora, pode estar chovendo, mas amanhã poderá estar ensolarado. Pela manhã, pode estar muito calor e à tarde todos serem surpreendidos pela chegada de uma frente fria.

O termo clima corresponde ao conjunto de condições atmosféricas que ocorrem com mais freqüência em uma determinada região. Por exemplo, na caatinga, no Nordeste brasileiro, o clima é quente e seco, podendo ocorrer chuvas. Mesmo quando o tempo está chuvoso, o clima permanece o mesmo (quente e seco).

Fatores relacionados à previsão do tempo

As nuvens

O tipo de nuvem presente na atmosfera é uma pista para a previsão do tempo. Quando olhamos para o céu e vemos nuvens escuras, geralmente cinzentas, logo achamos que vai chover. A nuvem escura possui gotículas de água tão próximas umas das outras que a luz do Sol quase não consegue atravessá-las. E a chuva pode se formar justamente quando as gotículas se juntam e formam gotas maiores, que não ficam mais suspensas na atmosfera, e caem.

As nuvens podem ficar em diferentes altitudes e variar nas suas formas, que dependem de como a nuvem sobe e da temperatura do ar.

São utilizadas palavras que vieram do latim para descrever os vários tipos de nuvens.

  • Cirros – Nuvens altas e de cor branca. Cirru significa ‘caracol’ em latim. Muitas vezes essas nuvens se parecem com cabelos brancos. Podem ser formadas por cristais de gelo.

  • Cúmulos – Nuvens brancas formando grandes grupos, com aspecto de flocos de algodão. Cumulu, em latim significa ‘pilha’, ‘montão’

  • Estratos – Formam grandes camadas que cobrem o céu, como se fossem um nevoeiro, e torna o dia nublado. Estratu significa ‘camada’.

Para descrever as nuvens usamos ainda os termos nimbos e altos. Nimbos são nuvens de cor cinza-escuro. A presença de nimbos no seu é sinal de chuva. Nimbos significa ‘portador de chuva’. E altos são nuvens elevadas.

Esses dois termos podem ser combinados para descrever os vários tipos de nuvens. Cúmulos-nimbos, por exemplo, são nuvens altas que costuma indicar tempestade.

As Massas de Ar

A massa de ar é um aglomerado de ar em determinadas condições de temperatura umidade e pressão. As massas de ar podem ser quentes ou frias. As quente, em geral, deslocam-se de regiões tropicais e as frias se originam nas regiões polares.

As massas de ar podem ficar estacionadas, em determinado local, por dias e até semanas. Mas quando se movem, provocam alteração no tempo havendo choques entre massas de ar quente e frio: enquanto uma avança, a outra recua.

O encontro entre duas massas de ar de temperaturas diferentes dá origem a uma frente, ou seja, a uma área de transição entre duas massas de ar. A frente pode ser fria ou quente. Uma frente fria ocorre quando uma massa de ar frio encontra e empurra uma massa de ar quente, ocasionando nevoeiro, chuva e queda de temperatura.

E uma frente quente ocorre quando uma massa de ar quente encontra uma massa de ar frio que estava estacionada sobre uma região, provocando aumento da temperatura.

Os Ventos

O ar em movimento se chama vento. Sua direção e velocidade afetam as condições do tempo. Para se prever quando uma massa de ar chegará a uma determinada localidade, é fundamental conhecer a velocidade dos ventos.

O movimento do ar, em relação à superfície da Terra, pode variar desde a calmaria e falta de vento até a formação de furacões que provocam a destruição em razão de ventos a mais de 120 quilômetros por hora.

A velocidade dos ventos é medida com um aparelho denominado anemômetro, que é, basicamente, um tipo de cata-vento, como se pode ver ao lado.

No anemômetro, as pequenas conchas giram quando o vento bate nelas, fazendo toda a peça rodar. Um ponteiro se movimenta em uma escala graduada, em que é registrada a velocidade do vento.

Nos aeroportos, é comum ver instrumentos, como, por exemplo, a biruta, que é muito simples, usada para verificar a direção do vento. Também podemos encontrar birutas na beira de praias, para orientar pescadores, surfistas etc.

Os aeroportos, atualmente têm torres de controle, nas quais as informações sobre velocidade e direção dos ventos obtidas por instrumentos são processadas por computadores, que fornecem dados necessários para o pouso e decolagem.

Agora vamos pensar: Em dias quentes, à beira-mar, algumas horas depois do amanhecer, pode-se sentir uma brisa agradável vinda do mar. Como podemos explicar isso?

O Sol aquece a água do mar e a terra. Mas a terra esquenta mais rápido que o mar. O calor da terra aquece o ar logo acima dela. Esse ar fica mais quente, menos denso e sobe. A pressão atmosférica nessa região se torna menor do que sobre o mar. Por isso, a massa de ar sobre o mar, mais fria, mais densa e com maior pressão, se desloca, ocupando o lugar do ar que subiu. Então esse ar aquece, e o processo se repete.

O movimento horizontal de ar do mar para a terra é chamado brisa marítima e acontece de dia.

De noite ocorre o contrário: a terra esfria mais rápido que o mar, já que a água ganha e perde calor mais lentamente que a terra. O ar sobre o mar está mais aquecido (o mar está liberando o calor acumulado durante o dia) e sobe. Então, o ar frio da terra se desloca para o mar. É a brisa terrestre.

Temperatura do Ar

A temperatura do ar é medida por meio de termômetros. Os boletins meteorológicos costumam indicar as temperaturas máxima e mínima previstas para um determinado período.

O vapor de água presente no ar ajuda a reter calor. Assim verificamos que, em lugares mais secos, há menor retenção de calor na atmosfera e a diferença entre temperatura máxima e mínima é maior. Simplificando, podemos dizer que nesses locais pode fazer muito calor durante o dia, graças ao Sol, mas frio à noite como, por exemplo, nos desertos e na caatinga.

Roupas típicas de habitantes do deserto costumam ser de lã, um ótimo isolante térmico, que protege tanto do frio quanto do calor excessivo. Além disso, as roupas são bem folgadas no corpo, com espaço suficiente para criar o isolamento térmico.

Umidade do Ar

A umidade do ar diz respeito à quantidade de vapor de água presente na atmosfera – o que caracteriza se o ar é seco ou úmido – e varia de um dia para o outro. A alta quantidade de vapor de água na atmosfera favorece a ocorrência de chuvas. Já com a umidade do ar baixa, é difícil chover.

Quando falamos de umidade relativa, comparamos a umidade real, que é verificada por aparelhos como o higrômetro, e o valor teórico, estimado para aquelas condições. A umidade relativa pode variar de 0% (ausência de vapor de água no ar) a 100% (quantidade máxima de vapor de água que o ar pode dissolver, indicando que o ar está saturado).

Em regiões onde a umidade relativa do ar se mantém muito baixa por longos períodos, as chuvas são escassas. Isso caracteriza uma região de clima seco.

A atmosfera com umidade do ar muito alta é um fator que favorece a ocorrência de chuva. Quem mora, por exemplo em Manaus sabe bem disso. Com clima úmido, na capital amazonense o tempo é freqüentemente chuvoso.

Como já vimos, a umidade do ar muito baixa causa clima seco e escassez de chuvas.

De acordo com a OMS (Organização Mundial da Saúde), valores de umidade abaixo de 20% oferecem risco à saúde, sendo recomendável a suspensão de atividades físicas, principalmente das 10 às 15horas. A baixa umidade do ar, entre outros efeitos no nosso organismo pode provocar sangramento nasal, em função do ressecamento das mucosas.

No entanto, também é comum as pessoas não se sentirem bem em dias quentes e em lugares com umidade do ar elevada. Isso acontece porque, com o ar saturado de vapor de água, a evaporação do suor do corpo se torna difícil, inibindo a perda de calor. E nosso corpo se refresca quando o suor que eliminamos evapora, retirando calor da pele.

Nível pluviométrico/ quantidade de chuva

A quantidade de chuva é medida pelo pluviômetro. Nesse aparelho, a chuva é recolhida por um funil no alto de um tambor e medida em um cilindro graduado.

A quantidade de chuva é medida no pluviômetro em milímetros: um milímetro de chuva corresponde a 1 litro de água por metro quadrado. Quando se diz, por exemplo, que ontem o índice pluviométrico, ou da chuva, foi de 5 milímetros na cidade de Porto Alegre, significa que se a água dessa chuva tivesse sido recolhida numa piscina ou em qualquer recipiente fechado, teria se formado uma camada de água com 5 milímetros de altura.

Os meteorologistas dizem que a chuva é leve quando há precipitação de menos de 0,5mm em uma hora; ela é forte quando excede os 4mm.

Pressão atmosférica

A pressão atmosférica está relacionada à umidade do ar. Quanto mais seco estiver o ar, maior será o valor desta pressão.

A diminuição da pressão atmosférica indica aumento da umidade do ar, que, por sua vez, indica a possibilidade de chuva. A pressão atmosférica é medida pelo barômetro.

 

 

 

Estações Meteorológicas

Nas estações meteorológicas são registradas e analisadas as variações das condições atmosféricas por meio de equipamentos dos quais fazem uso, como termômetros, higrômetros, anemômetros, pluviômetros, etc.

Nessas estações trabalham os meteorologistas, profissionais que estudam, entre outras coisas, as condições atmosféricas. Os meteorologistas contam com as informações captadas por satélites meteorológicos e radiossondas.

Os satélites meteorológicos são localizados em vários pontos do espaço, captam imagens da superfície e das camadas atmosféricas da Terra e podem mostrar a formação e o deslocamento das nuvens e das frentes frias ou quentes.

As radiossondas são aparelhos que emitem sinais de rádio. São transportados por balões e sua função é medir a pressão, a umidade, e a temperatura das camadas altas da atmosfera. Há aviões que também coletam e enviam informações sobre as condições do tempo.

Das estações meteorológicas, os técnicos enviam os dados das condições do tempo para os distritos ou institutos meteorológicos a fim de fazer as previsões do tempo para as diversas regiões.

No Brasil há o Inmet – Instituto Nacional de Meteorologia e o Inpe – Instituto Nacional de Pesquisas Espaciais, onde se fazem previsões que exigem maior precisão de dados.

As informações sobre o tempo nas diversas regiões do Brasil, divulgadas pelos noticiários, são obtidas junto a esses institutos ou de outros similares.

 

A poluição do ar e a nossa saúde

Como já vimos, a camada de ar que fica em contato com a superfície da Terra recebe o nome de troposfera que tem uma espessura entre 8 e 16 km. Devido aos fatores naturais, tais como as erupções vulcânicas, o relevo, a vegetação, os oceanos, os rios e aos fatores humanos como as indústrias, as cidades, a agricultura e o próprio homem, o ar sofre, até uma altura de 3 km, influências nas suas características básicas.

Todas as camadas que constituem nossa atmosfera possuem características próprias e importantes para a proteção da terra. Acima dos 25 km, por exemplo, existe uma concentração de ozônio (O3) que funciona como um filtro, impedindo a passagem de algumas radiações prejudiciais à vida. Os raios ultravioletas que em grandes quantidades poderiam eliminar a vida são, em boa parte, filtrados por esta camada de ozônio. A parcela dos raios ultravioletas que chegam a terra é benéfica tanto para a eliminação de bactérias como na prevenção de doenças. Nosso ar atmosférico não foi sempre assim como é hoje, apresentou variações através dos tempos. Provavelmente o ar que envolvia a Terra, primitivamente, era formado de gás metano (CH4), amônia (NH3), vapor d’água e hidrogênio (H2). Com o aparecimento dos seres vivos, principalmente os vegetais, a atmosfera foi sendo modificada. Atualmente, como já sabemos, o ar é formado de aproximadamente 78% de nitrogênio (N2), 21% de oxigênio, 0,03% de gás carbônico (CO2) e ainda gases nobres e vapor de água. Esta composição apresenta variações de acordo com a altitude.

Fatores que provocam alterações no ar


A alteração na constituição química do ar através dos tempos indica que o ar continua se modificando na medida em que o homem promove alterações no meio ambiente. Até agora esta mistura gasosa e transparente tem permitido a filtragem dos raios solares e a retenção do calor, fundamentais à vida. Pode-se dizer, no entanto, que a vida na Terra depende da conservação e até da melhoria das características atuais do ar.

Os principais fatores que têm contribuído para provocar alterações no ar são:

  • A poluição atmosférica pelas indústrias, que em algumas regiões já tem provocado a diminuição da transparência do ar;
  • o aumento do número de aviões supersônicos que, por voarem em grandes altitudes, alteram a camada de ozônio;
  • os desmatamentos, que diminuindo as áreas verdes causam uma diminuição na produção de oxigênio;
  • as explosões atômicas experimentais, que liberam na atmosfera grande quantidade de gases, de resíduos sólidos e de energia;
  • os automóveis e indústrias, que consomem oxigênio e liberam grandes quantidades de monóxido de carbono (CO) e dióxido de carbono (CO2).

Todos estes fatores, quando associados, colocam em risco o equilíbrio total do planeta, podendo provocar entre outros fenômenos, o chamado efeito estufa, que pode provocar um sério aumento da temperatura da terra, o que levará a graves conseqüências.

O Efeito Estufa

Graças ao efeito estufa, a temperatura da Terra se mantém, em média, em torno de 15ºC, o que é favorável à vida no planeta. Sem esse aquecimento nosso planeta seria muito frio.

O nome estufa tem origem nas estufas de vidro, em que se cultivam certas plantas, e a luz do Sol atravessa o vidro aquecendo o interior do ambiente. Apenas parte do calor consegue atravessar o vidro, saindo da estufa. De modo semelhante ao vidro da estufa, a atmosfera deixa passar raios de Sol que aquecem a Terra. Uma parte desse calor volta e escapa para o espaço, atravessando a atmosfera, enquanto outra parte é absorvida por gases atmosféricos (como o gás carbônico) e volta para a Terra, mantendo-a aquecida.

No entanto desde o surgimento das primeiras indústrias, no século XVIII, tem aumentado a quantidade de gás carbônico liberado para a atmosfera.

A atmosfera fica saturada com esse tipo de gás, que provoca o agravamento do efeito estufa. Cientistas e ambientalistas têm alertado para esse fenômeno que parece ser a principal causa do aquecimento global.

Observe abaixo um esquema do efeito estufa.

  • O gás carbônico e outros gases permitem a passagem da luz do Sol, mas retêm o calor por ele gerado.
  • A queima de combustíveis fosseis e outros processos provocam acúmulo de gás carbônico no ar, aumentando o efeito estufa.
  • Por meio da fotossíntese de plantas e algas, ocorre a remoção de parte do gás carbônico do ar.

A Poluição do Ar

A poluição do ar é definida como sendo a degradação da qualidade do ar como resultado de atividades diretas ou indiretas que:

  • Prejudiquem a saúde, a segurança e o bem-estar da população;
  • criem condições adversas às atividades sociais e econômicas;
  • afetem desfavoravelmente a biota (organismos vivos);
  • afetem as condições estéticas ou sanitárias do meio ambiente;
  • lancem matérias ou energia em desacordo com os padrões ambientais estabelecidos em leis federais [Lei Federal no 6938, de 31 de agosto de 1981, regulamentada pelo decreto no 88 351/83].

Poluição e sua fonte


Para facilitar o estudo do assunto, identificamos quatro tipos principais de poluição do ar, segundo as fontes poluidoras.

Poluição de origem natural: resultante de processos naturais como poeiras, nevoeiros marinhos, poeiras de origem extraterrestre, cinzas provenientes de queimadas de campos, gases vulcânicos, pólen vegetal, odores ligados à putrefação ou fermentação natural, entre outros.

Poluição relacionada aos transportes: resultante da ação de veículos automotores e aviões. Devido a combustão da gasolina, óleo diesel, álcool etc., os veículos automotores eliminam gases como o monóxido de carbono, óxido de enxofre, gases sulfurosos, produtos à base de chumbo, cloro, bromo e fósforo, além de diversos hidrocarbonetos não queimados. Variando de acordo com o tipo de motor, os aviões eliminam para a atmosfera: cobre, dióxido de carbono, monoaldeídos, benzeno etc.

Poluição pela combustão: resultante de fontes de aquecimento domésticos e de incinerações, cujos agentes poluentes são: dióxido de carbono, monóxido de carbono, aldeídos, hidrocarbonetos não queimados, compostos de enxofre. O anidrido sulfuroso, por exemplo, pode transformar-se em anidrido sulfúrico, e este, em ácido sulfúrico, que precipita juntamente com as águas das chuvas.

Poluição devida às indústrias: resultante dos resíduos de siderúrgicas, fábricas de cimento e de coque, indústrias químicas, usinas de gás e fundição de metais ferrosos. Entre esses resíduos encontram-se substâncias tóxicas e irritantes, poluentes fotoquímicos, poeiras etc. Além da poeira de natureza química, com grãos de tamanho dos mais diferentes, os principais poluentes industriais encontram-se no estado gasoso, sendo que os mais freqüentes são: dióxido de carbono, monóxido de carbono, óxido de nitrogênio, compostos fluorados, anidrido sulfuroso, fenóis e álcoois de odores desagradáveis.

Inversão térmica

Um fenômeno interessante na atmosfera é o da inversão térmica, ocasião na qual a ação dos poluentes do ar pode ser bastante agravada. A coisa funciona assim: normalmente, o ar próximo à superfície do solo está em constante movimento vertical, devido ao processo convectivo (correntes de convecção). A radiação solar aquece a superfície do solo e este, por sua vez, aquece o ar que o banha; este ar quente é menos denso que o ar frio, desse modo, o ar quente sobe (movimento vertical ascendente) e o ar frio, mais denso, desce (movimento vertical descendente).

Este ar frio que toca a superfície do solo, recebendo calor dele, esquenta, fica menos denso, sobe, dando lugar a um novo movimento descendente de ar frio.

E o ciclo se repete. O normal, portanto, é que se tenha ar quente numa camada próxima ao solo, ar frio numa camada logo acima desta e ar ainda mais frio em camadas mais altas porém, em constantes trocas por correntes de convecção. Esta situação normal do ar colabora com a dispersão da poluição local.

Na inversão térmica, condições desfavoráveis podem, entretanto, provocar uma alteração na disposição das camadas na atmosfera. Geralmente no inverno, pode ocorrer um rápido resfriamento do solo ou um rápido aquecimento das camadas atmosféricas superiores. Quando isso ocorre, o ar quente ficando por cima da camada de ar frio, passa a funcionar como um bloqueio, não permitindo os movimentos verticais de convecção: o ar frio próximo ao solo não sobe porque é o mais denso e o ar quente que lhe está por cima não desce, porque é o menos denso. Acontecendo isso, as fumaças e os gases produzidos pelas chaminés e pelos veículos não se dispersam pelas correntes verticais. Os rolos de fumaça das chaminés assumem posição horizontal, ficando nas proximidades do solo. A cidade fica envolta numa “neblina” e conseqüentemente a concentração de substâncias tóxicas aumenta muito.

O fenômeno é comum no inverno de cidades como Nova Iorque, São Paulo e Tóquio, agravado pela elevada concentração de poluentes tóxicos diariamente despejados na atmosfera.

 

Terras para agricultura

Por muito tempo, no passado, a espécie humana conseguia alimento apenas caçando, pescando e colhendo grãos, frutos e raízes. Mas, há cerca de dez mil anos, nossa espécie passou também a plantar os vegetais e criar os animais que lhe servem de alimento. Era o ponto de partida para o desenvolvimento da agricultura.

Com o aumento da população e a necessidade de se produzirem cada vez mais alimentos, a vegetação original das florestas e de outros ecossistemas foi sendo destruída para dar lugar ao cultivo de plantas comestíveis e à criação de animais. Hoje, o desmatamento é feito com máquinas (tratores e serras) ou com o fogo – são as chamadas queimadas, que trazem uma série de problemas.

De todas as terras emersas (fora da água) que formam os continentes e as ilhas do nosso planeta, apenas 10% aproximadamente são cultiváveis.

Muitas vezes, a atividade agrícola é feita de forma inadequada, por desconhecimento ou por falta de recursos e equipamentos. Como resultado, depois de alguns anos de produção, os nutrientes do solo se esgotam e as plantas não crescem mais.

Dependendo do tipo de solo e do tipo de plantação são necessários tomar alguns cuidados com a terra, e aplicar certos procedimentos como vamos ver a seguir.

Agricultura sustentável

A agricultura para a produção de alimentos para ser sustentável, em relação ao meio ambiente:

  • não deve causar prejuízos ao ambiente;
  • não deve liberar substâncias tóxicas ou danosas na atmosfera, nas águas superficiais ou nos lençóis freáticos;
  • deve preservar e restaurar a fertilidade do solo, prevenindo a erosão;
  • deve usar água de modo a permitir que se recarreguem as reservas aqüíferas, evitando que elas se esgotem.

Produzir alimento implica também manter uma diversidade de culturas para não empobrecer o solo e usar, quando necessário, um controle biológico para as pestes, mas com cuidado para evitar a contaminação do ambiente com substâncias químicas que possam se acumular.

Dessa forma a agricultura sustentável facilita a economia local e preserva a saúde do solo e a dos seres que nele vivem.

Cuidados com o solo

Quando o solo não apresenta condições necessárias à agricultura ou quando se deseja melhorar as suas condições, alguns cuidados devem ser tomados, como adubação, rotação de culturas, aragem do solo, irrigação e drenagem.

Adubação

Adubar significa enriquecer o solo com elementos nutrientes, quando ele está deficiente de minerais. Para isso, são utilizados adubos, substâncias capazes de fertilizar o solo.

Os adubos podem ser orgânicos (por exemplo: esterco, farinha de osso, folhas, galhos enterrados) ou minerais, que são inorgânicos (por exemplo: substâncias químicas são aplicadas, como nitrato de sódio, um tipo de sal).

Há ainda a adubação verde. Algumas vezes, as leguminosas também são utilizadas como adubos. Quando crescem são cortadas e enterradas no solo, enriquencendo-os com nitratos.

Rotação de culturas

A rotação de culturas consiste de alternar o plantio de leguminosas com outras variedades de plantas no mesmo local. Dessa forma as leguminosas, pela associação com bactérias que vivem nas suas raízes, devolvem para o local nutrientes utilizados por outras plantas, evitando o esgotamento do solo.

Aragem do solo

Arar o solo é outro cuidado que se deve ter para o solo não ficar compactado, “socado”.

Revolver a terra, além de arejar, facilita a permeabilidade do solo, permitindo que as raízes das plantas penetrem, no solo, além de levar para a superfície o húmus existente.

Minhocas – arados da natureza

As minhocas realizam um verdadeiro “trabalho” de arado no solo. Ao se movimentarem, elas abrem túneis e engolem parte da terra que deslocam, retirando daí o seu alimento.

Esses túneis, também denominados galerias, aumentam a porosidade do solo, e por isso a circulação do ar e a infiltração de água se intensificam.

As suas fezes contribuem para a formação do húmus, matéria orgânica importantíssima para a fertilidade do solo, facilitando o desenvolvimento de microorganismos decompositores ou fixadores de nitrogênio.

A minhocultura é a criação de minhocas em tanques especiais com finalidades comerciais. As minhocas são vendidas para isca, mas o húmus por elas produzido é comercializado como fertilizante para a agricultura, a jardinagem etc.

Irrigação e drenagem

Irrigar e drenar são alguns dos cuidados que devem ser tomados para manter o nível da umidade necessário ao solo e para garantir que ele continue fértil.

Com a irrigação, a água chega as regiões ou áreas muito secas. Já com a drenagem, retira-se o excesso de água do solo, possibilitando que ele seja arejado. Com o aumento dos poros, criam-se passagens de ar entre as partículas do solo.

 

 

Os perigos da poluição do solo

Não só os ecologistas, mas autoridades e todo cidadão devem ficar atentos aos perigos da poluição que colocam em risco a vida no planeta Terra.

O lixo

No início da história da humanidade, o lixo produzido era formado basicamente de folhas, frutos, galhos de plantas, pelas fezes e pelos demais resíduos do ser humano e dos outros animais. Esses restos eram naturalmente decompostos, isto é, reciclados e reutilizados nos ciclos do ambiente.

Com as grandes aglomerações humanas, o crescimento das cidades, o desenvolvimento das indústrias e da tecnologia, cada vez mais se produzem resíduos (lixo) que se acumulam no meio ambiente.

Hoje, além do lixo orgânico, que é naturalmente decomposto, reciclado e “devolvido” ao ambiente, há o lixo industrial eletrônico, o lixo hospitalar, as embalagens de papel e de plástico, garrafas, latas etc. que, na maioria das vezes, não são biodegradáveis, isto é, não são decompostos por seres vivos e se acumulam na natureza.


Lixo urbano despejado nos rios.

Lixões a céu aberto

A poluição do solo causada pelo lixo pode trazer diversos problemas.

O material orgânico que sofre a ação dos decompositores – como é o caso dos restos de alimentos – ao ser decompostos, forma o chorume. Esse caldo escuro e ácido se infiltra no solo. Quando em excesso, esse líquido pode atingir as águas do subsolo (os lençóis freáticos) e, por conseqüência contaminar as águas de poços e nascentes.

As correntezas de água da chuva também podem carregar esse material para os rios, os mares etc.


O liquido escuro é chorume saido dos lixos.

Chorume nos rios (mancha escura)

A poluição do solo por produtos químicos

A poluição do solo também pode ser ocasionada por produtos químicos lançado nele sem os devidos cuidados. Isso ocorre, muitas vezes, quando as indústrias se desfazem do seu lixo químico. Algumas dessas substâncias químicas utilizadas na produção industrial são poluentes que se acumulam no solo.

Um outro exemplo são os pesticidas aplicados nas lavouras e que podem, por seu acúmulo, saturar o solo, ser dissolvidos pela água e depois ser absorvidos pelas raízes das plantas. Das plantas passam para o organismo das pessoas e dos outros animais que delas se alimentam.

Os fertilizantes, embora industrializados para a utilização no solo, são em geral, tóxicos. Nesse caso, uma alternativa possível pode ser, por exemplo, o processo de rotação de culturas, usando as plantas leguminosas; esse processo natural não satura o solo, é mais econômico que o uso de fertilizantes industrializados e não prejudica a saúde das pessoas.

A poluição do solo, e da biosfera em geral, pode e deve ser evitada. Uma das providências necessárias é cuidar do destino do lixo.

O destino do lixo


Lixão de Araruama.
O lixo das residências, das escolas e das fábricas diferem quanto ao seu destino.

Se você mora em uma cidade e ela conta com a coleta de lixo, um importante serviço de saneamento básico, possivelmente ele será transportado para longe do ambiente urbano.

Mas vale lembrar que os depósitos de lixo a céu aberto ou mesmo os aterros comuns, onde o lixo é coberto de forma aleatória, não resolvem o problema da contaminação do ambiente, principalmente do solo.

Aterros sanitários

Nos aterros sanitários, o lixo, coberto com terra e amassado, é colocado em grandes buracos. Esse procedimento é repetido várias vezes, formando-se camadas sobrepostas.

Os aterros sanitários possuem sistemas de drenagem, que retiram o excesso de líquido, e sistemas de tratamento de resíduos líquidos e gasosos.

A construção de um aterro sanitário exige alguns cuidados:

  • o aterro deve ser pouco permeável, isto é, deixar passar pouca água e lentamente;
  • o aterro deve ser distante de qualquer lugar habitado;
  • não deve haver lençol subterrâneo de água nas proximidades do aterro.

Por essas razões, a implantação e a manutenção de um aterro sanitário têm um alto custo econômico.


Aterro sanitário em Sorocaba.

Incineração

A incineração reduz bastante o volume de resíduos e destrói organismos que causam doenças. É um processo caro, pois, para evitar a poluição do ar, é necessária a instalação de filtros e de equipamentos especiais para filtrar a fumaça resultante da incineração, que também é poluente.

O lixo deve ser queimado em aparelhos e usinas especiais. Após a queima,  o material que resta pode ser encaminhado para aterros sanitários.

Compostagem

A compostagem é a transformação dos restos orgânicos do lixo em um composto, nesse caso, em adubo. Esse adubo é resultado da ação de seres decompositores (bactérias e fungos) sobre as substâncias orgânicas do lixo.

Reciclagem

Reciclar é uma boa opção, pois diversos componentes do nosso lixo diário podem ser reaproveitados.

Em várias cidades brasileiras, há a coleta seletiva e a reciclagem do lixo, o que tem contribuído para diminuir o desperdício, além de proteger o solo de materiais não recicláveis pela natureza.

Aprenda aqui sobre a reciclagem

 

A erosão do solo

Como sabemos as chuvas, o vento e as variações de temperatura provocadas pelo calor e pelo frio alteram e desagregam as rochas. O solo também sofre a ação desses fatores: o impacto das chuvas e do vento, por exemplo, desagrega as suas partículas. Essas partículas vão então sendo removidas e transportadas para os rios, lagos, vales e oceanos.


Torres, RS


Bahia

Nas fotos acima, podemos observar como a ação da própria natureza pode provocar mudanças profundas na paisagem. O mar, chuva e o vento esculpiram os paredões na praia de Torres, RS e as falésias na Bahia.

No clima úmido e nos solos cobertos por uma vegetação natural, a erosão é, em geral, muito lenta, o que permite que seja compensada pelos processos que formam o solo a partir das rochas.

Os cientistas afirmam que as montanhas mais altas e que tem seus picos em forma de agulhas apontadas para cima são novas, do aspecto geológico. As mais antigas  não são tão altas e tem o cume arredondado, com as suas rochas duras à vista. Elas vêm sofrendo a mais tempo a ação erosiva, que as desgastou bastante. Esse tipo de erosão é muito comum no território brasileiro, mas, por ter uma ação lenta, é quase sempre imperceptível aos nossos olhos.


Montanha com pico em forma de agulha: Dedo de Deus, Rio de Janeiro, RJ.


Montanha com o cume arredondado: Pedra Azul em domingos Martins, ES.

 

A ação do ser humano

O desmatamento provocado pelas atividades humanas acelera muito a erosão natural. Vamos ver por quê.

Em vez de cair direto no solo, boa parte da água da chuva bate antes na copa das árvores ou nas folhas da vegetação, que funcionam como um manto protetor. Isso diminui muito o impacto da água sobre a superfície. Além disso, uma rede de raízes ajuda a segurar as partículas do solo enquanto a água escorre pela terra. E não podemos esquecer também que a copa das árvores protege o solo contra o calor do Sol e contra o vento.


Desmatamento para o cultivo em Marcelândia, MT.
Ao destruirmos a vegetação natural para construir casa ou para a lavoura, estamos diminuindo muito a proteção contra a erosão. A maioria das plantas que nos serve de alimento tem pouca folhagem e , por isso, não protege tão bem o solo contra a água da chuva. Suas raízes são curtas e ficam espaçadas nas plantações, sendo pouco eficientes para reter as partículas do solo. Finalmente, muitas plantas – como o milho, a cana-de-açúcar, o feijão e o algodão – não cobrem o solo o ano inteiro, deixando-o exposto por um bom tempo. O resultado é que a erosão se acelera, e a parte fértil fica prejudicada.

Com a erosão, o acúmulo de terra transportada pela água pode se depositar no fundo dos rios, obstruindo seu fluxo. Esse fenômeno é chamado de assoreamento e contribui para o transbordamento de rios e o alagamento das áreas vizinhas em períodos de chuva.


O município de Sítio do Mato no oeste baiano, está sendo engolido pelas águas e areias do Rio São Francisco.

Há ainda outro problema resultante do desmatamento. Sem a cobertura da vegetação, as encostas dos morros correm maior risco de desmoronar, provocando desabamentos de terra e rochas, com graves consequências.

Quando o desmatamento é feito por meio de queimadas, ocorre outro problema: o fogo acaba destruindo também os microorganismos que realizam a decomposição da matéria orgânica e promovem a reciclagem dos nutrientes necessários às plantas. A perda de matéria orgânica deixa o solo mais exposto à erosão e à ação das chuvas, acentuando o seu empobrecimento.

A queimada também libera na atmosfera gases que, quando em concentração muito elevada, prejudicam a saúde humana. Além disso, nos casos em que a queimada é realizada de forma não controlada, ela pode se alastrar por áreas de proteção ambiental, parques, etc.

Por todos esses motivos, as queimadas devem ser evitadas.

Como evitar a erosão?

 

Existem técnicas de cultivo que diminuem a erosão do solo. Nas encostas, por exemplo, onde a erosão é maior, as plantações podem ser feitas em degraus ou terraços, que reduzem a velocidade de escoamento da água.

Em encostas não muito inclinadas, em vez de plantar as espécies dispostas no sentido do fluxo da água, devemos formar fileiras de plantas em um mesmo nível do terreno, deixando espaço entre as carreiras. Essas linhas de plantas dispostas em uma mesma altura são chamadas de curvas de nível.

Outra forma de proteger a terra é cultivar no mesmo terreno plantas diferentes mas em períodos alternados. Desse modo o solo sempre tem alguma cobertura protetora. É comum a alternância de plantação de milho; por exemplo, com uma leguminosa. As leguminosas trazem uma vantagem adicional ao solo: repõe o nitrogênio retirado do solo pelo milho ou outra cultura. Esse “rodízio” de plantas é conhecido como rotação de culturas.

Cabe ao governo orientar os agricultores sobre as plantas mais adequadas ao cultivo em suas terras e sobre as técnicas agrícolas mais apropriadas. É fundamental também que os pequenos proprietários do campo tenham acesso a recursos que lhes possibilitem comprar equipamentos e materiais para o uso correto do solo.

 

 

 

Importância e vantagens da reciclagem
A partir da década de 1970, a produção de embalagens e produtos descartáveis  aumentou significativamente, assim como a produção de lixo, principalmente nos países desenvolvidos. Atualmente, muitos governos e ONGs estão cobrando das empresas posturas responsáveis: o crescimento econômico deve estar aliado à preservação do meio ambiente. Atividades como campanhas de coleta seletiva de lixo e reciclagem de alumínio e papel, já são comuns em várias partes do mundo.

O processo de reciclagem, além de preservar o meio ambiente também gera riquezas, os materiais mais reciclados são o vidro, o alumínio, o papel e o plástico. Esta reciclagem contribui para a diminuição significativa da poluição do solo, da água e do ar. Muitas indústrias estão reciclando materiais como uma forma de reduzir os custos de produção.

Muitos materiais como, por exemplo, o alumínio pode ser reciclado com um nível de reaproveitamento de quase 100%. Derretido, ele retorna para as linhas de produção das indústrias de embalagens, reduzindo os custos para as empresas.

Outro benefício da reciclagem é a quantidade de empregos que ela tem gerado nas grandes cidades. Muitos desempregados estão buscando trabalho neste setor e conseguindo renda para manterem suas famílias. Cooperativas de catadores de papel e alumínio já são uma boa alternativa nos centros urbanos do Brasil.

Muitas campanhas educativas têm despertado a atenção para o problema do lixo nas grandes cidades. Cada vez mais, os centros urbanos, com grande crescimento populacional, têm encontrado dificuldades em conseguir locais para instalarem depósitos de lixo. Portanto, a reciclagem apresenta-se como uma solução viável economicamente, além de ser ambientalmente correta.

Nas escolas, os professores devem orientar os alunos a separarem o lixo em suas residências, caso isto já não esteja acontecendo. Hoje é comum que os condomínios já tenham organizada a coleta seletiva.

 

 

Outras vantagens da reciclagem:

  • Cada 50 quilos de papel usado, transformado em papel novo, evita que uma árvore seja cortada. Pense na quantidade de papel que você já jogou fora até hoje e imagine quantas árvores você poderia ter ajudado a preservar.
  • Cada 50 quilos de alumínio usado e reciclado, evita que sejam extraídos do solo cerca de 5.000 quilos de minério, a bauxita. Quantas latinhas de refrigerantes você já jogou no lixo comum até hoje?
  • Com um quilo de vidro quebrado, faz-se exatamente um quilo de vidro novo. E a grande vantagem do vidro é que ele pode ser reciclado infinitas vezes.
  • Economia de energia e matérias-primas. Menos poluição do ar, da água e do solo.
  • Melhora a limpeza da cidade, pois o morador que adquire o hábito de separar o lixo, dificilmente o joga nas vias públicas.
  • Gera renda pela comercialização dos recicláveis. Diminui o desperdício.
  • Gera empregos para os usuários dos programas sociais e de saúde da Prefeitura.
  • Dá oportunidade aos cidadãos de preservarem a natureza de uma forma concreta, tendo mais responsabilidade com o lixo que geram.

Agora imagine só os aterros sanitários: quanto material que está lá, ocupando espaço, e poderia ter sido reciclado!

 

Como podemos observar, se o homem souber utilizar os recursos da natureza, poderemos ter, muito em breve, um mundo mais limpo e mais desenvolvido. Desta forma, poderemos conquistar o tão sonhado desenvolvimento sustentável do planeta.

Exemplos de Produtos Recicláveis

  • Vidro: potes de alimentos (azeitonas, milho, requeijão, etc.), garrafas, frascos de medicamentos, cacos de vidro.
  • Papel: jornais, revistas, folhetos, caixas de papelão, embalagens de papel.
  • Metal: latas de alumínio, latas de aço, pregos, tampas, tubos de pasta, cobre, alumínio.
  • Plástico: potes de plástico, garrafas PET, sacos plásticos, embalagens e sacolas de supermercado.

Simbologia da reciclagem

 

 

As cores características dos containers apropriados para a coleta seletiva de lixo:

 

 

Até hoje, não se sabe onde e com que critério foi criado o padrão de cores dos containers utilizados para a coleta seletiva voluntária em todo o mundo. No entanto, alguns países já reconhecem esse padrão como um parâmetro oficial a ser seguido por qualquer modelo de gestão de programas de coleta seletiva.

Existe uma simbologia específica para a reciclagem de plásticos:

No Brasil existe uma norma (NBR 13230) da ABNT – Associação Brasileira de Normas Técnicas, que padroniza os símbolos que identificam os diversos tipos de resinas (plásticos) virgens. O objetivo é facilitar a etapa de triagem dos resíduos plásticos que serão encaminhados à reciclagem. Os tipos são classificados por números a saber:

  • PET
  • PEAD
  • PVC
  • PEBD
  • PP
  • PS
  • Outros

 

Como separar

Para a separação do material, basta ter em casa dois recipientes: um para o lixo úmido e rejeitos a serem recolhidos pela Companhia de Limpeza da Cidade e outro recipiente para o lixo seco: plástico, metal, vidro e papel, todos devidamente lavados e/ou limpos e secos.

No caso de condomínios, escolas ou empresas, pode-se aumentar o número de recipientes destinados à coleta seletiva, identificando-os por cores e tipos de material:

 

 

 

 

Reciclagem do papel
O papel é um dos produtos mais utilizados nas tarefas do cotidiano. Quando não está sendo mais utilizado, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do papel reciclado. O papel reciclado tem praticamente todas as características do papel comum, porém sua cor pode variar de acordo com o papel utilizado no processo de reciclagem.

 

Importância
A reciclagem do papel é de extrema importância para o meio ambiente. Como sabemos, o papel é produzido através da celulose de determinados tipos de árvores. Quando reciclamos o papel ou compramos papel reciclado estamos contribuindo com o meio ambiente, pois árvores deixaram de ser cortadas. Não podemos esquecer também, que a reciclagem de papel gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de papel.

 

Coleta
Uma das etapas mais importantes no processo de reciclagem de papel é a separação e coleta seletiva do papel. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de papel.

Tipos de papéis recicláveis

Tipos de papel que podem ser reciclados: papel sulfite, papelão, caixas de embalagens de produtos, papel de presente, folhas de caderno, entre outros.

Como fazer papel reciclado em casa (reciclagem caseira)

Materiais:

  • papel e água
  • bacias: rasa e funda
  • balde
  • moldura de madeira com tela de nylon ou peneira reta
  • moldura de madeira vazada (sem tela)
  • liquidificador
  • jornal ou feltro
  • pano (ex.: morim)
  • esponjas ou trapos
  • varal e pregadores
  • prensa ou duas tábuas de madeira
  • peneira côncava (com “barriga”)
  • mesa

Modo de preparo:

A – Preparando a polpa

Pique o papel e deixe de molho durante um dia ou uma noite na bacia rasa, para amolecer. Coloque água e papel no liquidificador, na proporção de três partes de água para uma de papel. Bata por dez segundos e desligue. Espere um minuto e bata novamente por mais dez segundos. A polpa está pronta.

B – Fazendo o papel

  1. Despeje a polpa numa bacia grande, maior que a moldura.
  2. Coloque a moldura vazada sobre a moldura com tela. Mergulhe a moldura verticalmente e deite-a no fundo da bacia.
  3. Suspenda-as ainda na posição horizontal, bem devagar, de modo que a polpa fique depositada na tela. Espere o excesso de água escorrer para dentro da bacia e retire cuidadosamente a moldura vazada.
  4. Vire a moldura com a polpa para baixo, sobre um jornal ou pano.
  5. Tire o excesso de água com uma esponja.
  6. Levante a moldura, deixando a folha de papel artesanal ainda úmida sobre o jornal ou morim.

C- Prensando as folhas

Para que suas folhas de papel artesanal sequem mais rápido e o entrelaçamento das fibras seja mais firme, faça pilhas com o jornal da seguinte forma:

  1. Empilhe três folhas do jornal com papel artesanal. Intercale com seis folhas de jornal ou um pedaço de feltro e coloque mais três folhas do jornal com papel. Continue até formar uma pilha de 12 folhas de papel artesanal.
  2. Coloque a pilha de folhas na prensa por 15 minutos. Se não tiver prensa, ponha a pilha de folhas no chão e pressione com um pedaço de madeira.
  3. Pendure as folhas de jornal com o papel artesanal no varal até que sequem completamente. Retire cada folha de papel do jornal ou morim e faça uma pilha com elas. Coloque esta pilha na prensa por 8 horas ou dentro de um livro pesado por uma semana.

D- Efeitos decorativos

  • Misture à polpa: linha, gaze, fio de lã, casca de cebola ou casca de alho, chá em saquinho, pétalas de flores e outras fibras.
  • Bata no liquidificador junto com o papel picado: papel de presente, casca de cebola ou de alho.
    Coloque sobre a folha ainda molhada: barbante, pedaços de cartolina, pano de tricô ou crochê. Neste caso, a secagem será natural – não é necessário pressionar com o pedaço de madeira.
  • Para ter papel colorido: bata papel crepom com água no liquidificador e junte essa mistura à polpa. Outra opção é adicionar guache ou anilina diretamente à polpa.

Dicas importantes

  • A tela de nylon deve ficar bem esticada, presa à moldura por tachinhas ou grampos.
  • Reutilize a água que ficar na bacia para bater mais papel no liquidificador
  • Conserve a polpa que sobrar: peneire e esprema com um pano. Guarde, ainda molhada (em pote plástico no congelador) ou seca (em saco de algodão).
  • A polpa deve ser ainda conservada em temperatura ambiente.

 

 

 

Reciclagem do vidro
O vidro é um dos produtos mais utilizados nas tarefas do dia-a-dia. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do vidro reciclado. O vidro reciclado tem praticamente todas as características do vidro comum. Ele pode ser reciclado muitas vezes sem perder sua características e qualidade.
Importância
A reciclagem do vidro é de extrema importância para o meio ambiente. Como sabemos, o vidro é produzido através da celulose de determinados tipos de árvores. Quando reciclamos o vidro ou compramos vidro reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza (rios, lagos, solo, matas). Não podemos esquecer também, que a reciclagem de vidro gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de vidro e outros materiais reciclados.

 

 

Coleta seletiva
Uma das etapas mais importantes no processo de reciclagem de vidro é a separação e coleta seletiva do vidro. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de vidro.

 

Separação no processo de reciclagem

Uma das primeiras etapas no processo de reciclagem do vidro é sua separação por cores (âmbar, verde, translúcido e azul) e tipos (lisos, ondulados, vidros de janelas, de copos, etc). Esta separação é de extrema importância para a fabricação de novos objetos de vidro, pois garante suas características e qualidades.

 

Tipos de vidros recicláveis

  • Garrafas de sucos, refrigerantes, cervejas e outros tipos de bebidas;
  • Potes de alimentos
  • Cacos de vidros
  • Frascos de remédios
  • Frascos de perfumes
  • Vidros planos e lisos
  • Pára-brisas
  • Vidros de janelas
  • Pratos, tigelas e copos (desde que não sejam de acrílico, cerâmica ou porcelana)

 

Reciclagem dos metais

 

O metal é um dos produtos mais utilizados nas tarefas do dia-a-dia. Encontramos embalagens de metais, fios e outros produtos metálicos em diversos produtos. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do metal reciclado.

O metal reciclado tem praticamente todas as características do metal comum. Ele pode ser reciclado muitas vezes sem perder suas características e qualidade.

O alumínio, por exemplo, pode ser usado sem limites. O aço após ser reciclado volta para a cadeia produtiva para ser transformado em latas e peças automotivas, por exemplo.

 
Importância
A reciclagem do metal é de extrema importância para o meio ambiente. Quando reciclamos o metal ou compramos metal reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza (rios, lagos, solo, matas). Não podemos esquecer também, que a reciclagem de metal gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de metal e outros materiais reciclados. O metal tem um alto valor para a reciclagem.

 

Coleta seletiva

Uma das etapas mais importantes no processo de reciclagem de metal é a separação e coleta seletiva do metal. Nas empresas, residências e outros locais existem espaços destinados ao descarte de metal.

 

Separação no processo de reciclagem

Na primeira fase do processo de reciclagem de metal, os mesmos são separados por tipos e características. Desta forma, alumínio, cobre, aço e ferro passam por processos de reciclagem diferentes.

 


Tipos de metais recicláveis

  • Latas de alumínio (refrigerante, cerveja, etc) e aço (latas de sardinha, molhos, óleo, etc.
  • Arames, pregos, parafusos
  • Fios de metal
  • Tampas de metal
  • Tubos de pasta
  • Panelas sem cabo
  • Arames
  • Chapas de metal
  • Objetos de alumínio (janelas, portas, portões, etc)
  • Fios e objetos de cobre;
  • Ferragens
  • Canos de metal
  • Molduras de quadros
  • Tampinhas de garrafa
  • Tampas metálicas de potes de iogurtes, margarinas, queijos, etc
  • Papel alumínio

Reciclagem do plástico
O plástico é um dos produtos mais utilizados na sociedade atual. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do plástico reciclado.O plástico reciclado tem praticamente todas as características do plástico comum.

 

Importância

A reciclagem do plástico é de extrema importância para o meio ambiente. Quando reciclamos o plástico ou compramos plástico reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza, poluindo rios, lagos, solo e matas.

Não podemos esquecer também, que a reciclagem de plástico gera renda para milhares de pessoas no Brasil que atuam, principalmente, em empresas e cooperativas de catadores e recicladores de materiais reciclados.

 

 

Coleta seletiva

Uma das etapas mais importantes no processo de reciclagem de plástico é a separação e coleta seletiva do Plástico. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de plástico. Esta é uma atitude extremamente positiva e ecologicamente correta.

 

Reciclagem de embalagens PET (politereftalato de etileno)

Nas últimas décadas as indústrias, principalmente de bebidas e alimentos, estão substituindo as embalagens de vidro e latas pelas de plástico PET. Por serem mais resistentes e econômicas, o PET já está presente nas embalagens de sucos, águas, óleos e refrigerantes. Quando começou a ser usado, o PET não era reciclado e seu descarte na natureza provocava muita sujeira e poluição ambiental. Atualmente, a reciclagem de PET é praticada em larga escala por cooperativas e empresas de reciclagem. O processo de reciclagem do PET passa pelas seguintes etapas: 1º) As embalagens PET são lavadas e passam por um processo de prensagem; 2º) Os fardos de PET são triturados, gerando os flocos; 3º) Os flocos passam por um processo de extrusão, gerando os grãos; 4º) Os grãos são transformados em fios de poliéster ou outros produtos plásticos.

 

 

Tipos de plásticos recicláveis

  • Garrafas PET
  • Potes Plásticos diversos
  • Tampas de embalagens
  • Sacos plásticos diversos
  • Canos de pvc
  • Para-choques de carros
  • Copos descartáveis
  • Plásticos de brinquedos
  • Embalagens de produtos de limpeza

Reciclar baterias e pilhas

 

Importância

 

As pilhas e baterias, quando descartadas em lixões ou aterros sanitários, liberam componentes tóxicos que contaminam o solo, os cursos d’água e os lençóis freáticos, afetando a flora e a fauna das regiões circunvizinhas e o homem, pela cadeia alimentar.

Devido a seus componentes tóxicos, as pilhas podem também afetar a qualidade do produto obtido na compostagem de lixo orgânico. Além disso, sua queima em incineradores também não consiste em uma boa prática, pois seus resíduos tóxicos permanecem nas cinzas e parte deles pode volatilizar, contaminando a atmosfera.

Os componentes tóxicos encontrados nas pilhas são: cádmio, chumbo e mercúrio.

Todos afetam o sistema nervoso central, o fígado, os rins e os pulmões, pois eles são bioacumulativos.

O cádmio é cancerígeno, o chumbo pode provocar anemia, debilidade e paralisia parcial, e o mercúrio pode também ocasionar mutações genéticas.

 

Coleta seletiva

Considerando os impactos negativos causados ao meio ambiente pelo descarte inadequado das pilhas e baterias usadas e a necessidade de disciplinar o descarte e o gerenciamento ambientalmente adequado (coleta, reutilização, reciclagem, tratamento ou disposição final) de pilhas e baterias usadas, a Resolução n° 257/99 do CONAMA resolve em seu artigo primeiro:

“As pilhas e baterias que contenham em suas composições chumbo, cádmio, mercúrio e seus compostos, necessário ao funcionamento de quaisquer tipos de aparelhos, veículos ou sistemas, móveis ou fixos, bem como os produtos eletroeletrônicos que os contenham integrados em sua estrutura de forma não substituível, após seu esgotamento energético, serão entregues pelos usuários aos estabelecimentos que as comercializam ou à rede de assistência técnica autorizada pelas respectivas indústrias, para repasse aos fabricantes ou importadores, para que estes adotem diretamente, ou por meio de terceiros, os procedimentos de reutilização, reciclagem, tratamento ou disposição final ambientalmente adequado”.

 

 

 

 

Reciclagem de entulhos
Entulho é o conjunto de fragmentos ou restos de tijolo, concreto, argamassa, aço, madeira, etc., provenientes do desperdício na construção, reforma e/ou demolição de estruturas, como prédios, residências e pontes.

O entulho de construção compõe-se, portanto, de restos e fragmentos de materiais, enquanto o de demolição é formado apenas por fragmentos, tendo por isso maior potencial qualitativo, comparativamente ao entulho de construção.

Importância

A quantidade de entulho gerado nas construções que são realizadas nas cidades brasileiras demonstra um enorme desperdício de material. Os custos deste desperdício são distribuídos por toda a sociedade, não só pelo aumento do custo final das construções como também pelos custos de remoção e tratamento do entulho.

Na maioria das vezes, o entulho é retirado da obra e disposto clandestinamente em locais como terrenos baldios, margens de rios e de ruas das periferias. As prefeituras comprometem recursos, nem sempre mensuráveis, para a remoção ou tratamento

desse entulho: tanto há  o trabalho de retirar o entulho da margem de um rio como o de limpar galerias e desassorear o leito de córregos onde o material termina por se depositar.

Apesar de causar tantos problemas, o entulho deve ser visto como fonte de materiais de grande utilidade para a construção civil. Seu uso mais tradicional – em aterros – nem sempre é o mais racional, pois ele serve também para substituir materiais normalmente extraídos de jazidas ou pode se transformar em matéria-prima para componentes de construção, de qualidade comparável aos materiais tradicionais.

O processo de reciclagem do entulho, para a obtenção de agregados, basicamente envolve a seleção dos materiais recicláveis do entulho e a trituração em equipamentos apropriados. Os resíduos encontrados predominantemente no entulho, que são recicláveis para a produção de agregados, pertencem aos grupos I e II.

  • Grupo I – materiais compostos de cimento, cal, areia e brita: concretos, argamassa, blocos de concreto.
  • Grupo II – materiais cerâmicos: telhas, manilhas, tijolos, azulejos.
  • Grupo III – materiais não-recicláveis: solo, gesso, metal, madeira, papel, plástico, matéria orgânica, vidro e isopor. Desses materiais, alguns são passíveis de serem selecionados e encaminhados para outros usos. Assim, embalagens de papel e papelão, madeira e mesmo vidro e metal podem ser recolhidos para reutilização ou reciclagem.

 

 

 

 

 

Reciclagem de pneus

 

Os pneus usados podem ser reutilizados após sua recauchutagem. Esta consiste na remoção por raspagem da banda de rodagem desgastada da carcaça e na colocação de uma nova banda. Após a vulcanização, o pneu “recauchutado” deverá ter a mesma durabilidade que o novo.

A economia do processo favorece os pneus mais caros, como os de transporte (caminhão, ônibus, avião), pois neste segmentos os custos são melhor monitorados.

Há limites no número de recauchutagem que um pneu suporta sem afetar seu desempenho. Assim sendo, mais cedo ou mais tarde, os pneus são considerados inutilisáveis e descartados.

Os pneus descartados podem ser reciclados ou reutilizados para diversos fins. Neste caso, são apresentadas, a seguir, várias opções:

 

Na engenharia civil

O uso de carcaças de pneus na engenharia civil envolve diversas soluções criativas, em aplicações bastante diversificadas, tais como, barreira em acostamentos de estradas, elemento de construção em parques e playgrounds, quebra-mar, obstáculos para trânsito e, até mesmo, recifes artificiais para criação de peixes.

 

Na regeneração da borracha

O processo de regeneração de borracha envolve a separação da borracha vulcanizada dos demais componentes e sua digestão com vapor e produtos químicos, tais como, álcalis, mercaptanas e óleos minerais. O produto desta digestão é refinado em moinhos até a obtenção de uma manta uniforme, ou extrudado para obtenção de material granulado.

A moagem do pneu em partículas finas permite o uso direto do resíduo de borracha em aplicações similares às da borracha regenerada.

 

 

Na geração de energia

O poder calorífico de raspas de pneu equivale ao do óleo combustível, ficando em torno de 40 Mej/kg. O poder calorífico da madeira é por volta de 14 Mej/kg.

Os pneus podem ser queimados em fornos já projetados para otimizar a queima. Em fábricas de cimento, sua queima já é realidade em outros países. A Associação Brasileira de Cimento Portland (ABCP) informa que cerca de 100 milhões de carcaças de pneus são queimadas anualmente nos Estados Unidos com esta finalidade, e que o Brasil já está experimentando a mesma solução.

 

No asfalto modificado com borracha

O processo envolve a incorporação da borracha em pedaços ou em pó. Apesar do maior custo, a adição de pneus no pavimento pode até dobrar a vida útil da estrada, porque a borracha confere ao pavimento maiores propriedades de elasticidade perante mudanças de temperatura. O uso da borracha também reduz o ruído causado pelo contato dos veículos com a estrada. Por causa destes benefícios, e também para reduzir o armazenamento de pneus velhos, o governo americano requer que 5% do material usado para pavimentar estradas federais seja de borracha moída.

 

 

Materiais não recicláveis
A reciclagem é um ato de extrema importância nos dias atuais. Além de ajudar na preservação do meio ambiente, gera renda para milhares de pessoas. Porém, por questões técnicas, nem todos os materiais descartados por pessoas ou indústrias podem passar pelo processo de reciclagem estes, após passarem por processos industriais, não podem ser reutilizados e tem como destino o lixo comum.

 

 

 

Relação de Materiais Não Recicláveis
VIDROS

  • Vidro de automóveis
  • Vidro de janela
  • Espelhos
  • Cristais
  • Lâmpadas (de todos os tipos)
  • Vidro de boxe de banheiro
  • Vidro temperado
  • Ampolas de remédios

PAPÉIS

  • Papel celofane
  • Papel carbono
  • Papel Higiênico
  • Guardanapos e papel toalha com restos de alimentos
  • Papel laminado
  • Papel plastificado
  • Fraldas descartáveis
  • Espuma
  • Etiquetas e adesivos
  • Fotografias
  • Fita Crepe

VIDROS

  • Cerâmicas, porcelanas e louças
  • Acrílicos
  • Boxes temperados
  • Lentes de óculos
  • Tubo de TV

METAIS

  • Latas enferrujadas
  • Clipes e grampos
  • Esponjas de aço
  • Latas de tinta, verniz, inseticida e solvente
  • Aerossóis

ISOPOR

Este material (espécie de plástico) pode ser reciclado. Porém, muitas empresas que trabalham com reciclagem rejeitam o isopor em função do baixo retorno financeiro que representa.

 

PILHAS E BATERIAS

Pilhas e baterias (embora não recicláveis devem ser coletados separadamente (não descartados com o lixo comum), pois em contato com o meio ambiente podem gerar contaminação do solo e água).

Veja mais aqui.

 

 

 

Reciclagem do óleo de cozinha
Muitos bares, restaurantes, hotéis e residências ainda jogam o óleo utilizado na cozinha direto na rede de esgoto, desconhecendo os prejuízos dessa ação. Independente do destino, esse produto prejudica o solo, a água, o ar e a vida de muitos animais, inclusive o homem.

Quando retido no encanamento, o óleo causa entupimento das tubulações e faz com que seja necessária a aplicação de diversos produtos químicos para a sua remoção. Se não existir um sistema de tratamento de esgoto, o óleo acaba se espalhando na superfície dos rios e das represas, contaminando a água e matando muitas espécies que vivem nesses habitats.

Dados apontam que com um litro de óleo é possível contaminar um milhão de litros de água. Se acabar no solo, o líquido pode impermeabilizá-lo, o que contribui com enchentes e alagamentos. Além disso, quando entra em processo de decomposição, o óleo libera o gás metano que, além do mau cheiro, agrava o efeito estufa.

 

Despejo correto de óleo
Para evitar que o óleo de cozinha usado seja lançado na rede de esgoto,  cidades, instituições e pessoas de todo o mundo têm criado métodos para reciclar o produto. As possibilidades são muitas: produção de resina para tintas, sabão, detergente, glicerina, ração para animais e até biodiesel.

Esse tipo de combustível já está sendo largamente desenvolvido em todo o mundo. Aqui no Brasil, o Programa das Nações Unidas para o Meio Ambiente (PNUMA) em parceria com a Bayer premiou uma pesquisa da Universidade de São Paulo (USP) sobre produção de biocombustível a partir do óleo de cozinha. A premiação ocorreu em 2007, durante o projeto Jovens Embaixadores Ambientais.

O projeto Biodiesel em casa e nas escolas também conta com a participação de universitários, escolas e empresas que já ajudaram a coletar mais de cem toneladas de óleo de cozinha para ser transformada em combustível 100% renovável.
Processo
Biodisel – A transformação do óleo de cozinha em energia renovável começa pela filtragem, que retira todo o resíduo deixado pela fritura. Depois é removida toda a água misturada ao produto. A depender do óleo, ele passará por uma purificação química que irá retirar os últimos resíduos. Esse óleo “limpo” recebe então a adição de álcool e de uma substância catalisadora. Colocado no reator e agitado a temperaturas específicas, ele se transforma em biocombustível e após o refino pode ser usado em motores capacitados para queimá-lo.

Sabão – Para fazer barras de sabão a partir do óleo de cozinha, basta seguir a receita abaixo:
Materiais:

  • 5 litros de óleo de cozinha usado
  • 2 litros de água
  • 200 mililitros de amaciante
  • 1 quilo de soda cáustica em escama

Preparo:

  1. Coloque cuidadosamente a soda em escamas no fundo de um balde.
  2. Depois, coloque a água fervendo.
  3. Mexa até diluir todas as escamas da soda.
  4. Adicione o óleo e mexa.
  5. Adicione o amaciante e mexa novamente.
  6. Jogue a mistura numa fôrma e espere secar.
  7. Corte o sabão em barras.

Atenção: A soda cáustica pode causar queimaduras na pele. O ideal é usar luvas e utensílios de madeira ou plástico para preparar a mistura.

Outros tipos de soluções podem servir para evitar que o óleo seja jogado nas redes de esgoto. Um produto desenvolvido na Espanha promete solidificar o óleo e facilitar seu armazenamento, coleta e reciclagem. Batizado de Frito Limpio, o produto deve ser jogado no óleo ainda quente e após alguns minutos todo o liquido estará sólido. Basta retirar da frigideira e guardar.

Caso essa solução esteja muito longe de você, basta armazenar a sobra da fritura em uma garrafa PET e entregar em um posto de coleta.

 

Confira onde doar seu óleo de cozinha utilizado:

 

Em algumas capitais brasileiras são as prefeituras que estão se mobilizando, em outras, é a própria população através de organizações não-governamentais.

Ribeirão Preto: possui o projeto Cata óleo numa parceria da USP e o Ladetel (Laboratório de Desenvolvimento de Tecnologias Limpas). Os interessados recebem um recipiente para armazenar o óleo. O caminhão do laboratório passa recolhendo o produto em datas pré-estabelecidas.
Todo o óleo recolhido na cidade será usado na produção do biodiesel. Hoje são recolhidos cerca de 20 mil litros de óleo por mês com os comerciantes, no entanto, o interesse é atingir a população e aí receber cerca de 160 mil litros mensalmente.
Informações: interessados em participar do projeto podem entrar em contato com o Ladetel pelo telefone (16) 602.3734.

Curitiba: a Prefeitura Municipal de Curitiba lançou o serviço de coleta especial de óleo de fritura. O recolhimento está sendo feito em 78 pontos do Câmbio Verde (programa de recolhimento de lixo reciclável) e nos 21 terminais de ônibus da cidade. Quando é feita a entrega nestes postos, dois litros de óleo dão direito a um quilo de hortifrutigranjeiros, incentivando ainda mais a população.
Depois de recolhido, o óleo de fritura é encaminhado para a reciclagem, onde é transformado em sabão, detergente e matéria-prima para fabricação de outros produtos.
Para ser entregue, o óleo deve ser armazenado em garrafas pets, de preferência transparentes.
Informações: os dias e horários da coleta podem ser obtidos pelo telefone 156 ou na página da prefeitura na internet – http://www.curitiba.pr.gov.br

ABC Paulista: o Instituto Triângulo tem sido o exemplo na reciclagem de óleo de cozinha em São Paulo. Equipes vão até o local solicitado para a coleta, desde que se tenha um mínimo de seis litros para solicitar o recebimento. A entrega do óleo em São Paulo também pode ser feita na rede de supermercados Pão de Açúcar ou na Ong Trevo e Samorcc (Sociedade dos Amigos e Moradores do Bairro de Cerqueira César).
Informações: Instituto Triângulo (11) 4991-1112 – http://www.triangulo.org.br

Florianópolis: a coleta é feita pela Universidade Federal de Santa Catarina que, desde o ano passado, desenvolve o projeto chamado Família Casca, em que recupera o óleo de cozinha e o transforma em combustível. No entanto, o projeto coleta o produto apenas na região próxima à universidade.
Outra maneira de dar um fim útil ao óleo de bares e restaurantes na cidade é por meio da Associação Industrial e Comercial de Florianópolis, a Acif, que dirige o programa ReÓleo.
Informações: http://www.acif.org.br

Rio de Janeiro: o óleo que seria jogado pode ser levado para os postos implantados pelo Programa de Reaproveitamento de Óleos Vegetais, o Prove, firmado entre a iniciativa privada, a Refinaria de Manguinhos e a Secretaria de Meio Ambiente do Rio. Entre os postos de coleta está o Circo Voador. Outro meio de colaborar é ligar para o Disque-Óleo: basta entrar em contato para a equipe desse programa visitar sua casa
Informações: Disque-Prove: (21) 2598-9240 Disque-óleo: (21) 2260-3326 http://www.disqueoleo.com.br

Salvador: o engenheiro químico Luciano Hocevar é o responsável pela Renove, Reciclagem de Óleos Vegetais, e pela picape que passa pelas casas da cidade fazendo a coleta do óleo de cozinha.
Informações: (71) 9979-2504 – http://www.renoveoleo.com.br

Porto Alegre: a Prefeitura de Porto Alegre, através do Departamento Municipal de Limpeza Urbana (DMLU), realiza o Projeto de reciclagem de óleo de fritura. São 24 locais de coleta do produto, que será transformado entre outras coisas em resina de tintas, sabão e biodiesel. Foi assinado convênio entre o DMLU e três empresas, que recolherão óleos de cozinha entregues pela população e os encaminharão para reciclagem.
Informações: http://funverde.wordpress.com

O sucesso destes programas de reciclagem de óleo de cozinha depende inteiramente da participação da comunidade. Todos esses programas de coletas, sejam governamentais ou não-governamentais, oferecem todas as informações necessárias para a reciclagem do óleo e também esclarecimentos sobre proteção ambiental, justamente para inserir a sociedade na responsabilidade ecológica.

 

 

 

Cadeia alimentar

 

O equilíbrio ecológico depende diretamente da interação, das trocas e das relações que os seres vivos estabelecem entre si e com o ambiente.

Os seres respiram, vivem sobre o solo ou na água, obtêm alimento, aquecem-se com o calor do Sol, abrigam-se, reproduzem-se, morrem, se decompõem etc. Nesses processos, o ar, o solo, a água e a luz solar interagem de forma intensa com as plantas, os animais e os demais seres vivos. Essa interação garante a dinâmica vida da biosfera. A Amazônia, por exemplo, abriga uma rica diversidade biológica que inclui aproximadamente 20% de todas as espécies existentes no planeta. Esse é um fato intimamente relacionado à incidência dos raios solares na região equatorial, à abundância de água e ao sistema de manutenção da umidade e dos nutrientes do solo.

 

Obtendo Energia para Viver

Todos os seres vivos precisam de energia para produzir as substâncias necessárias à manutenção da vida e à reprodução. Os seres vivos obtêm a energia basicamente de duas maneiras: Os clorofilados, através da energia do Sol, e os não-clorofilados, a partir da alimentação dos clorofilados.

Vamos explicar melhor:

A cadeia alimentar é uma sequêncianismos que mostra quem se alimenta de quem.

Por exemplo:

O ser humano (ser vivo não-clorofilado) ao comer um bife, está mastigando a carne de um boi (ser vivo não-clorofilado) que se alimentou de capim (ser clorofilado). O capim obtém a energia para crescer a partir da luz do Sol, em um processo chamado fotossíntese, e por este motivo é chamado de produtor. Já os organismos não clorofilados são chamados de consumidores. Olhe o esquema abaixo:

Produtores    Consumidores  primários   Consumidores secundários

Capim

 

 

Boi

 

Ser Humano

 

Produtores

Como exemplos de produtores temos as plantas e as algas, seres clorofilados, que não se alimentam de outro ser vivo obtendo do Sol a sua energia de que necessita para a fotossíntese.

No processo da fotossíntese, as plantas retiram água e sais minerais do solo pelas raízes. Na maioria das plantas, a água é levada até as folhas através de pequenos tubos, os vasos condutores de seiva bruta. A folha retira também um gás do ar, o gás carbônico. As plantas usam então o gás carbônico, a água e a luz solar  absorvida graças à clorofila (pigmento verde presente principalmente nas folhas) para fabricar açúcares. Esse processo é chamado fotossíntese.

Não é só o açúcar que você conhece, usado para adoçar o café e os doces, que é fabricado pelas plantas. O arroz, a batata, a banana, o feijão, o macarrão, ou qualquer outro alimento de origem vegetal, são constituídos de um tipo de açúcar (chamado de amido) também fabricado pelas plantas no processo da fotossíntese.

Além dos açúcares a fotossíntese dá origem ao gás oxigênio. O oxigênio é então lançado no ar ou na água (no caso de plantas aquáticas). E, por fim, os animais e as plantas usam esse gás e o alimento para produzir energia.

 

Podemos resumir a fotossíntese assim:

gás carbônico + água + luz solar ——-> açúcar + oxigênio

 

Esse esquema pode ser lido da seguinte maneira: o gás carbônico se combina com a água  e com a energia da luz solar transformando-se (a seta indica transformação) em açúcar e oxigênio.

O açúcar produzido pela fotossíntese recebe o nome de glicose. Quando essa glicose é produzida em excesso ela é “guardada” pela planta na forma de amido. O amido nada mais é do que várias moléculas de glicose ligadas uma as outras.

 

 

 

Os seres clorofilados são classificados como produtores porque, utilizando diretamente a energia solar, a água e o gás carbônico, para produzir as substâncias necessárias à manutenção das suas atividades vitais, garantindo o seu crescimento e a sua reprodução.

 

O pulmão do mundo?

Até pouco tempo, acreditava-se que a região amazônica era a grande responsável pela manutenção dos níveis de oxigênio da terra, sendo popularmente chamada de ‘pulmão da terra’. Porém, recentes pesquisas descobriram a existência de um novo “pulmão”: as algas marinhas. Apesar de se apresentar nas cores verdes, azuis, marrons, amarelas e vermelhas, todas as algas possuem clorofila e fazem fotossíntese. Como são muito numerosas, que se atribui a sua fotossíntese a maior parte de oxigênio existente no planeta.

 

 

 

 

Todos os seres vivos respiram

 

Imagine a seguinte situação: depois de dirigir por um tempo, o motorista teve de parar e abastecer o carro. Você já se perguntou para onde vai o combustível? E por que o carro pára se ficar sem combustível?

O combustível se mistura com o oxigênio e é queimado, transformando-se em gás carbônico e água (na forma de vapor), que saem pelo escapamento. Essa queima de gasolina ou de outro combustível é chamada de combustão.

É pela respiração que a energia do alimento é usada para as atividades do organismo. Veja um resumo da respiração:

glicose + oxigênio —-> gás carbônico + água + energia

A energia originada pela respiração será usada para a realização de todas as atividades dos seres vivos. Você, por exemplo, precisa de energia para crescer, andar, correr, falar, pensar e muito mais.

 

A planta faz fotossíntese e também respira!

A respiração não é feita apenas pelos animais. Todos os seres vivos respiram, inclusive as plantas. Isso quer dizer que as plantas usam, na respiração, parte do alimento que fabricam na fotossíntese. Com isso conseguem energia para o crescimento da raiz, do caule, das folhas, etc. A outra parte da energia (da glicose) produzida pela planta na fotossíntese é armazenada em forma de amido servindo de reserva para a planta. A semente, por exemplo, irá crescer inicialmente com a energia dos açucares que ela armazena.

 

Do produtor ao consumidor

Nas cadeias alimentares encontramos animais que se alimentam de plantas: são chamados animais herbívoros. Outros animais comem os animais herbívoros: são os carnívoros. E ainda há carnívoros que comem outros carnívoros e animais que comem tanto as plantas quanto outros animais, sendo chamados de onívoros. Todos esses organismos que se alimentam de outros seres são chamados de consumidores.

 

Para simplificar chamamos o primeiro consumidor da cadeia, isto é, os animais herbívoros, de consumidores primários ou consumidores de primeira ordem. Os animais que vêm logo em seguida são classificados como consumidores secundários. Os seguintes são consumidores terciários, quaternários e assim por diante. Podem existir consumidores de quinta ordem ou mais, mas as cadeias não vão muito além disso.

 

 

 

A Reciclagem da Natureza: Os Decompositores

 

Papel, latas, garrafas, para fabricar esses e outros materiais o ser humano consome diversos produtos da natureza, como metais e árvores. À medida que a população aumenta, o consumo de matérias-primas também cresce, mais árvores são derrubadas, mais minerais são extraídos do solo, novas usinas de energia têm de ser construídas.

Uma das maneiras de diminuir os problemas que o ser humano provoca na natureza ao extrair tantos recursos seria aumentar a reciclagem, isto é, o reaproveitamento de diversos materiais. Com isso, economizamos energia e diminuímos a destruição dos recursos naturais. Pense quantas árvores podem deixar de ser abatidas se reciclarmos o papel dos jornais, por exemplo, para fabricar outros papéis.

Nos ambientes naturais, ocorre um tipo de reciclagem feito por diversos organismos que se alimentam de plantas e animais mortos e também de fezes e urina. Os principais organismos que realizam esse trabalho são as bactérias e os fungos (ou cogumelos). São esses organismos que fazem uma fruta apodrecer, por exemplo.

Esses seres da mesma forma que os animais e as plantas precisam de energia para as suas atividades. A diferença, porém, é que seu alimento são “restos” de outros seres vivos.

Assim, quando parte de uma planta cai no solo ou um animal morre, os açúcares, as gorduras e as proteínas que formam seu corpo são atacados por bactérias e fungos e transformados em gás carbônico, água e sais minerais pela respiração desses organismos.

Por sua vez, essas substâncias (o gás carbônico, a água e  os sais minerais) são liberadas para o ambiente e podem ser reaproveitas pelas plantas na construção de açucares, proteínas e outras substâncias que vão formar seu corpo.

Esse processo, realizado principalmente por bactérias e fungos, é chamado decomposição. Bactérias e fungos são exemplos de organismos decompositores.

A decomposição faz a matéria que é retirada do solo pelas plantas (e aproveitada em seu crescimento) voltar ao solo. Dizemos então que há um ciclo da matéria na natureza: a matéria passa do solo para os seres vivos e dos seres vivos para o solo.

Imagine o que aconteceria se a decomposição fosse interrompida: cadáveres e lixo iriam se acumular e faltariam às plantas diversos minerais necessários para a sobrevivência. Consequentemente, sem plantas, os animais também não teriam alimento.

 

Podemos reciclar energia?

Uma lâmpada transforma energia elétrica em luz. Mas uma parte da energia elétrica é transformada também em calor: a lâmpada esquenta quando está ligada. Um rádio transforma energia elétrica em som, mas ele também esquenta, porque uma parte da energia elétrica é transferida sob forma de calor para o ambiente.

Os seres vivos também estão sempre liberando para o ambiente uma parte da energia dos alimentos sob forma de calor. Mas, como você já sabe, a energia usada pela planta na fotossíntese vem da luz do Sol e não do calor gerado pelos organismos.

Desse modo ao contrário do que ocorre com a matéria, a energia não é completamente reciclada nas cadeias alimentares. De onde, então, vem a energia? Do Sol. É o Sol que constantemente fornece, energia sob a forma de luz.

Você pode perceber então a importância do Sol: ele é a fonte de energia que mantém a fotossíntese na Terra e, conseqüentemente, todas as formas de vida.

 

A teia alimentar

 

Na natureza, alguns seres podem ocupar vários papéis em diferentes cadeias alimentares. Quando comemos uma maçã, por exemplo, ocupamos o papel de consumidores primários. Já ao comer um bife, somos consumidores secundários, pois o boi, que come o capim, é consumidor primário.

Muitos outros animais também têm alimentação variada. Um organismo pode se alimentar de diferentes seres vivos, além de servir de alimento para diversos outros. O resultado é que as cadeias alimentares se cruzam na natureza, formando o que chamamos de teia alimentar.

Nas teias alimentares, um mesmo animal pode ocupar papéis diferentes, dependendo da cadeia envolvida. Na teia representada no esquema abaixo (siga as setas) o gavião ocupa tanto o papel de consumidor secundário quanto terciário.

 

(Produtores)                          (Consumidor primário)        (Consumidor secundário)
Plantas, frutos e sementes    Pica-Pau         Gavião

ou

(Produtores)              (Consumidor primário)  (Consumidor secundário)  (Consumidor terciário)
Plantas, frutos e sementes Pica-Pau       Sucuri         Gavião

 

 

As plantas nunca mudam o seu papel: são sempre produtores. E todos os produtores e consumidores, estão ligados aos decompositores, que permitem a reciclagem da matéria orgânica no ambiente.

 

 

Acúmulo de substâncias na cadeia alimentar

 

No início dos anos 50, em um lago dos Estados Unidos, foi usado um inseticida, um produto químico que destrói mosquitos. A quantidade aplicada foi mínima.

Cinco anos depois, porém, começaram a aparecer mergulhões mortos no lago. Uma pesquisa mostrou que essas aves morreram intoxicadas pelo inseticida. Os pesquisadores descobriram que o inseticida havia entrado na cadeia alimentar. Primeiro, as algas microscópicas do lago absorveram o inseticida; depois, os peixes pequenos se alimentaram dessas algas; os peixes maiores comeram os menores; e por fim, os mergulhões comeram os peixes maiores.

O inseticida usado no lago pertencia a um grupo de substâncias que permaneceu no ambiente por centenas de anos sem se decompor, ou se decompondo muito lentamente. E, da mesma forma, quando ingeridas, essas substâncias em geral demoram bastante para serem eliminadas pelo organismo.

Outros exemplos de elementos que o organismo dos seres vivos tem dificuldade em decompor e eliminar são o chumbo e o mercúrio. Se ingeridas com determinada freqüência, essas substâncias vão se acumulando no organismo e provocando doenças.

Em  certas regiões do Brasil, os garimpeiros usam mercúrio para separar o ouro da areia. Uma parte do mercúrio se espalha na água e se perde. Resultado: os próprios garimpeiros correm risco de se contaminar diretamente e, além disso, as águas dos rios tornam-se perigosas, com alta taxa de mercúrio. Esse mercúrio pode, com o tempo, se depositar no corpo das pessoas que se alimentam de peixes.

 

 

 

 

 

http://www.sobiologia.com.br

About these ads

2 thoughts on “Ciências de 5ª série parte II

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s